1,643
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial activity of Blumea axillaris synthesized selenium nanoparticles against multidrug resistant pathogens of aquatic origin

, &
Pages 65-76 | Received 21 May 2021, Accepted 15 Dec 2021, Published online: 16 Jan 2022

References

  • Kumari A, Yadav SK. Nanotechnology in agri-food sector. Crit Rev Food Sci Nutr. 2014;54(8):975–984.
  • Rodrigues SM, Demokritou P, Dokoozlian N, et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano. 2017;4:767–781.
  • Shah B, Mraz J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac. 2019 12 ;925–942.
  • Khurana A, Tekula S, Saifi MA, et al. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–812.
  • Bhattacharya A, Janardana Reddy S, Mahbub Hasan M, et al. Nanotechnology: a unique future technology in aquaculture for food security. Int J Bioassays. 2015;04: 4115–4426.
  • Huang S, Wang L, Liu L, et al. Nanotechnology in agriculture, livestock, and aquaculture in China: A review. Agron Sustain Dev. 2015;35(2):369–400.
  • ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), and EMA (European Medicines Agency) ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals – Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J. 2017;15(7):e04872.
  • Cabello F, Godfrey H, Tomova A, et al. Antimicrobial use in aquaculture re examined: it’s relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013 15 1917–1942 .
  • Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8(7):1137–1144.
  • Ryu SH, Park SG, Choi SM, et al. Antimicrobial resistance and resistant genes in Escherichia coli strains isolated from commercial fish and sea food. Int J Food Microbiol. 2012;152(1–2):14–18.
  • Done HY, Venkatesan AK, Halden RU., et al. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J. 2015;17(3):513–524.
  • Toyokawa H, Nakao A, Bailey RJ, et al. Relative contribution of direct and indirect allorecognition in developing tolerance after liver transplantation. Liver Transpl. 2008;14(3):346–357.
  • Xu W, Huang K, Jin W, et al. Catalytic and anti-bacterial properties of biosynthesized silver nanoparticles using native inulin. RSC Adv. 2018a;8(50):28746–28752.
  • Zhang L, Pornpattananangkul D, Hu CMJ, et al. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–594.
  • Swain P, Das R, Das A, et al. Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, labeo rohita (Hamilton). Aquac Nutr. 2018 25 ;486–494.
  • Malhotra N, Ger TR, Uapipatanakul B, et al. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials. 2020 10 :1126.
  • Wang T, Long XH, Cheng Y, et al. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol. 2014;152:96–104.
  • Buerki-Thurnherr T, Xiao L, Diener L, et al. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology. 2013;7(4):402–416.
  • Blinova I, Ivask A, Heinlaan M, et al. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut. 2010;158(1):41–47.
  • Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a fresh water micro alga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 2007;41(24):8484–8490.
  • Tran PA, Webster TJ. Selenium nanoparticles inhibit staphylococcus aureus growth. Int J Nanomedicine. 2011;6:1553–1558.
  • Khan KU, Zuberi A, Nazir S, et al. Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile tor putitora. Turk J Zool. 2016; 40: 704–712.
  • Anf N-A, Mahmoud EA, Hakim YAE., et al. Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against streptococcus iniae infection. Fish Shellfish Immunol. 2019;94:280–287.
  • Wang CL, Lovell RT, Klesius PH., et al. Response to edwardsiella ictaluri challenge by channel catfish fed organic and inorganic sources of Selenium. J Aquat Anim Health. 1997;9(3):72–179.
  • Zheng W, Cao C, Liu Y, et al. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater. 2015;11:368–380.
  • Mary TA, Shanthi K, Vimala K, et al. PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Adv. 2016;6(27):22936–22949.
  • Zhao S, Yu Q, Pan J, et al. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity. Acta Biomater. 2017;54:294–306.
  • Nugroho RA, Fotedar R. Dietary organic selenium improves growth, survival and resistance to vibrio mimicus in cultured marron, Cherax cainii (Austin, 2002). Fish Shellfish Immunol. 2013;35(1):79–85.
  • Le KT, Fotedar R. Immune responses to vibrio anguillarum in yellowtail kingfish, Seriola lalandi, fed Selenium supplementation. J World Aquacult Soc. 2014;5:138148.
  • Baidya S, Murthy HS. Effect of organic selenium on growth, immune response and resistance of labeo rohita to Aeromonas hydrophila infection. Int J Fish Aquat Stud. 2017;5(5):243–246.
  • Chiu ST, Hsieh SL, Yeh SP, et al. The increase of immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii by feeding with selenium enriched-diet. Fish Shellfish Immunol. 2010;29(4):623–629.
  • Wang Q, Webster TJ. Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. Int J Nanomedicine. 2013;8:407–411.
  • Li X, Li Y, Li S, et al. Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process. Cryst Growth Des. 2005;5(3):911–916.
  • Sauvaire Y, Baissac Y, Leconte O, et al. Steroid saponins from fenugreek and some of their biological properties. Adv Exp Med Biol. 1996;405:37–46.
  • Sowndarya P, Ramkumar G, Shivakumar MS., et al. Green synthesis of selenium nanoparticles conjugated clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomed Biotechnol. 2017;45(8):1490–1495.
  • Ramamurthy CH, Sampath KS, Arunkumar P, et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2012;36(8):1131–1139.
  • Cui D, Liang T, Sun L, et al. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm Biol. 2018;56(1):528–534.
  • Senthilkumar A, Kannathasan K, Venkatesalu V., et al. Chemical constituents and larvicidal properties of the essential oil of blumea mollis (D. Don) Merr. against culex quinquefasciatus. Parasitol Res. 2008;103(4):959–962.
  • Sreelekha KP, Ajeesh Krishna TP, Adarsh Krishna TP, et al. Pharmaco-chemical characterization of leaves of blumea mollis (D. Don) merr.- from Western Ghats of Wayanad region of Kerala, India. J Pharmacogn Phytochem. 2017;6(4): 319–323.
  • Sivanandhan S, Ganesan P, Jackson A, et al. Activity of some medicinal plants against phytopathogenic fungi. Int Res J Biol Sci. 2018;5(5):124–137.
  • Bauer AW, Kirby WMM, Sherris J, et al. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;45(4_ts):493–496.
  • Da Costa PM, Loureir L, Augusto J, et al. Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Env Res Pub Health. 2013;10(1):278–294.
  • Nikaido, H Multidrug Resistance in Bacteria Ann Rev Biochem. 2009;78(1):119–146.
  • Ryu SH, Park SG, Choi SM, et al. Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and sea food. Int J Food Microbiol. 2011;152(1–2):14–18.
  • Sharma G, Sharma AR, Bhavesh R, et al. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules. 2014;19(3):2761–2770.
  • Anu K, Singaravelu G, Murugan K, et al. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on Vero cells. J Cluster Sci. 2017;28(1):551–563.
  • Fardsadegh B, Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Pro Syn. 2019;8(1):399–407.
  • Resende JA, Silva VL, Fontes CO, et al. Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environ. 2012;27(4):449–455.
  • Kozińska A, Pękala A. Serotyping of Aeromonas species isolated from polish fish farms in relation to species and virulence phenotype of the bacteria. Bull Vet Inst Pulawy. 2010;54:315–320.
  • Hu M, Wang N, Pan ZH, et al. Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol. 2012;55(3):223–224.
  • Orozova P, Chikova V, Najdenski H., et al. Antibiotic resistance of pathogenic for fish isolates of Aeromonas spp. Bulg J Agric Sci. 2010;16:376–386.
  • Hossain MJ, Sun D, McGarey DJ, et al. An Asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in United States-farmed catfish. mBio. 2014;(3). DOI:10.1128/mBio.00848-14.
  • Stratev D, Daskalov H, Vashin I., et al. Characterisation and determination of antimicrobial resistance of β-haemolytic Aeromonas spp. isolated from common carp (Cyprinus carpio L.). Revue Méd Vét. 2015;166:54–61.
  • Mulyani Y, Aryantha NP, Suhandono S, et al. Intestinal bacteria common carp (Cyprinus carpio L) as a biological control agent for Aeromonas. J Pure Appl Microbiol. 2018;12(2):601–610.
  • Chan FK, Ching JY, Ling TK, et al. Aeromonas infection in acute suppurative cholangitis: review of 30 cases. J Infect. 2000;40(1):69–73.
  • Chim H, Song C. Aeromonas infection in critically ill burn patients. Burns. 2007;33(6):756–759.
  • Okumura K, Shoji F, Yoshida M, et al. Severe sepsis caused by Aeromonas hydrophila in a patient using tocilizumab: a case report. J Med Case Rep. 2011;5(1):499.
  • Castillo CS, Hikima JI, Jang HB, et al. Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob Agents Chemother. 2013;57(1):120–129.
  • Zdanowicz M, Mudryk ZJ, Perliński P., et al. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet Res Commun. 2020;44(1):9–18.
  • Son R, Rusul G, Sahilah AM, et al. Antibiotic resistance and plasmid profile of Aeromonas hydrophila isolates from cultured fish, Tilapia (Tilapia mossambica). Lett Appl Microbiol. 1997;24(6):479–482.
  • Adenaike O, Olonitola OS, Ameh JB, et al. Multidrug resistance and multiple antibiotic resistance index of Escherichia coli strains isolated from retailed smoked fish. J Nat Sci Res. 2016 6 :2225–2921.
  • Nair Divek VT, Kumar V, Anup K., et al. Antibiotic-resistant salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods. 2018;7(10):167.
  • Shohreh F, Reza R, Mojtaba A, et al. Emergence of multi drug resistant strains of Escherichia coli isolated from urinary tract infection Open Conf Proc J. 2010. Vol. 1, p. 192–196.
  • Sekhar GSS, Sv R, Shylaja M, et al. The detection and antimicrobial susceptibility profile of shigella isolates in and around Hyderabad, Telangana. Pharm Innov. 2018;7(2):84–88.
  • Taylor D, Dalton C, Hall A, et al. Recent developments in selenium research. Br J Biomed Sci. 2009;66(2):107–116.
  • Lin YH, Shiau SY. The effects of dietary selenium on the oxidative stress of grouper, Epinephelus malabaricus, fed high copper. Aquaculture. 2007;(1–4). DOI: 10.1016/j.aquaculture.2006.12.015.
  • Nazari K, Shamsaie M, Eila N, et al. The effects of different dietary levels of organic and inorganic selenium on some growth performance and proximate composition of juvenile rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci. 2016;16(1):238–251.
  • Lyons MSD. Organic selenium as a supplement for Atlantic salmon: effects on meat quality. In: Lyons TP, and Jacques KA, editors. Biotechnology in the feed industry. Proceedings of Alltech’s 14th Annual Symposium: passport to the year 2000 Nottingham University Press, Nottingham, UK; p. 505–508.
  • Sarkar B, Bhattacharjee S, Daware A, et al. Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett. 2015;10(1):371.