983
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Horticultural crops as natural therapeutic plants for the therapy of diabetes mellitus

ORCID Icon, &
Pages 380-395 | Received 16 Mar 2023, Accepted 19 May 2023, Published online: 30 May 2023

References

  • Oboh G, Ademiluyi AO, Akinyemi AJ, et al. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J Funct Foods. 2012;4(2):450–458.
  • Srinivasan S, Vinothkumar V, Murali R. Antidiabetic efficacy of citrus fruits with special allusion to flavone glycosides bioactive food as dietary interventions for diabetes. 2nd ed. Cambridge, Massachusetts: Elsevier Academic Press; 2019pp. 335–346.
  • Preethi PJ. Herbal medicine for diabetes mellitus: a Review. Asian J Pharmaceutical Res. 2013;3(2):57–70.
  • Alhassan AJ, Lawal TA, Dangambo M. Antidiabetic properties of thirteen local medicinal plants in Nigeria, a review. World J Pharma Res. 2017;6(8):2170–2189.
  • USDA. (2020). Citrus: World Markets and Trade.
  • Mallick N, Khan RA. Effect of Citrus paradisi and Citrus sinensis on glycemic control in rats. Afr J Pharm Pharmacol. 2015;9(3):60–64.
  • Mahmoud AM, Ashour MB, Abdel-Moneim A, et al. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications. 2012;26(6):483–490.
  • Tavafi M, Ahmadvand H, Tamjidipoor A, et al. Satureja khozestanica essential oil ameliorates progression of diabetic nephropathy in uninephrectomized diabetic rats. Tissue Cell. 2011;43(1):45–51.
  • Kim G-N, Shin J-G, Jang H-D. Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi. Food Chem. 2009;117(1):35–41.
  • Osuntokun OT, Olumekun V, Ajayi A, et al. Assessment of in-vitro antioxidant/enzymes inhibitory potentials of aframomum melegueta [Roscoe] K. Schum (grains of paradise) leaf, stem bark, seed bark and seed extracts. Archiv Curr Res Int. 2020;20(2):40–57.
  • Al Malki WH, Abdel-Raheem IT, Dawoud MZ, et al. 6-shogaol protects against diabetic nephropathy and cardiomyopathy via modulation of oxidative stress/NF-κB pathway. Pak J Pharm Sci. 2018;31(5):2109–2117.
  • Ajayi A, Osuntokun O, Olumekun V, et al. Systemic evaluation of anti-diabetics, anti-Inflammatory and secondary metabolite potentials of Aframomum melegueta [Roscoe] K. South Asian J Parasitol. 2022;6(4):66–82.
  • Kamtchouing P, Mbongue G, Dimo T, et al. Effects of Aframomum melegueta and Piper guineense on sexual behaviour of male rats. Behav Pharmacol. 2002;13(3):243–247.
  • Ilic N, Schmidt BM, Poulev A, et al. Toxicological evaluation of grains of paradise (Aframomum melegueta)[Roscoe] K. J Ethnopharmacol. 2010;127(2):352–356.
  • Nosiri C, Okereke S, Anyanwu C, et al. Responses of liver and pancreatic cells to ethanolic seed extract of Aframomum melegueta in alloxan-induced diabetic rats. J Med Plant Res. 2016;4(5):112–116.
  • Umoh I, Samuel O, Kureh T, et al. Antidiabetic and hypolipidaemic potentials of ethanol fruit pulp extract of Persea americana (avocado pear) in rats. J Afr Assos Physiol Sci. 2019;7(1):59–63.
  • Ebifa JO, Elechi-Amadi H, Abiakam H, et al. Comparative effects of Carica papaya, avocado pear and ginger extracts on the histological structure of the pancreas of streptozotocin-induced diabetic rats. Asian J Med Principles Clin Pract. 2021;4(4):1–11.
  • Alhassan A, Sule M, Atiku M, et al. Effects of aqueous avocado pear (Persea americana) seed extract on alloxan induced diabetes rats. Greener J Med Sci. 2012;2(1):5–11.
  • Sunday A, Uzoma K. Hypoglycemic, hypolipidemic and body weight effects of unripe pulp of Carica papaya using diabetic Albino rat model. J Pharmacogn Phytochem. 2014;2(6):109–114.
  • Ikeyi A, Ogbonna A, Eze F. Phytochemical analysis of paw-paw (Carica papaya) leaves. Int J Life Sci Biotechnol Pharma Res. 2013;2(3):347–351.
  • Saleem M, Tanvir M, Akhtar MF, et al. Antidiabetic potential of Mangifera indica L. cv. Anwar Ratol leaves: medicinal application of food wastes. Medicina. 2019;55(7):353–361.
  • Apea OB, Faruq UZ. Antidiabetic activity of pawpaw leaf extract: chemical composition and biokinetic modeling. J Sci Innovat Dev. 2013;1(2):13–21.
  • Ogundele AV, Otun KO, Ajiboye A, et al. Anti-diabetic efficacy and phytochemical screening of methanolic leaf extract of pawpaw (Carica papaya) grown in North Central Nigeria. J Turk Chem Soc A Chem. 2017;4(1):99–114.
  • Mao Q-Q, Xu X-Y, Cao S-Y, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185.
  • Son MJ, Miura Y, Yagasaki K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology. 2015;67(4):641–652.
  • Abdulrazaq NB, Cho MM, Win NN, et al. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. British Journal Of Nutrition. 2012;108(7):1194–1201.
  • Khandouzi N, Shidfar F, Rajab A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. Iranian J Pharm Res. 2015;14(1):131–140.
  • Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res. 2006;20(9):764–772.
  • Nwaoguikpe RN. The effect of extract of bitter leaf (Vernonia amygdalina) on blood glucose levels of diabetic rats. Int J Biol Chem Sci. 2010;4(3):721–729.
  • Mazumder U, Gupta M, Manikandan L, et al. Evaluation of anti-inflammatory activity of Vernonia cinerea Less. extract in rats. Phytomedicine. 2003;10(2–3):185–188.
  • Saliu J, Ademiluyi A, Akinyemi A, et al. In vitro antidiabetes and antihypertension properties of phenolic extracts from bitter leaf (Vernonia amygdalina Del.). J Food Biochem. 2012;36(5):569–576.
  • Adefegha A, Oboh G, Akinyemi A, et al. Inhibitory effects of aqueous extract of two varieties of ginger on some key enzymes linked to type-2 diabetes in vitro. J Food Nutr Res. 2010;49(1):14–20.
  • Reddy J, Hemachandran J. Comparative evaluation of the antidiabetic and hypoglycaemic potentials of the parts Musa paradisiaca plant extracts. Int J Sci Res. 2014;4:1–5.
  • Shanmuga SC, Subramanian S. Biochemical evaluation of hypoglycemic activity of Musa paradisiaca (plantain) flowers in STZ-induced experimental diabetes in rats. Asian J Res Chem. 2011;4(5):827–833.
  • Vilhena RO, Figueiredo ID, Baviera AM et al. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. J Ethnopharmacol. 2020;254:112666.
  • Shodehinde SA, Ademiluyi AO, Oboh G, et al. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats. Life Sci. 2015;133:8–14.
  • Kappel VD, Cazarolli LH, Pereira DF, et al. Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: multiple sites of action. Revista Brasileira de Farmacognosia. 2013;23(4):706–715.
  • Ganogpichayagrai A, Palanuvej C, Ruangrungsi N. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res. 2017;8(1):19–24.
  • Pino JA, Mesa J, Muñoz Y, et al. Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chemistry. 2005;53(6):2213–2223.
  • Bhowmik A, Khan LA, Akhter M, et al. Studies on the antidiabetic effects of Mangifera indica stem-barks and leaves on nondiabetic, type 1 and 2 diabetic model rats. Bangladesh J Pharmacol. 2009;4(2):110–114.
  • Gondi M, Basha SA, Bhaskar JJ, et al. Anti‐diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin‐induced diabetic rats. J Sci Food Agric. 2015;95(5):991–999.
  • Azhar A, Aamir K, Asad F, et al. Therapeutic effect of mango seed extract in diabetes mellitus. Professional Med J. 2019;26(9):1551–1556.
  • Vijayakumar K, Prasanna B, Rengarajan R, et al. Anti-diabetic and hypolipidemic effects of Cinnamon cassia bark extracts: an in vitro, in vivo, and in silico approach. Arch Physiol Biochem. 2020;129(2):338–348.
  • Singh P, Jayaramaiah RH, Agawane SB, et al. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: proteomic and mechanistic insights. Sci Rep. 2016;6(1):18798–18810.
  • Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol. 2006;104(1–2):119–123.
  • Khan A, Safdar M, Ali Khan MM, et al. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26(12):3215–3218.
  • Association AD. Economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26(3):917–932.
  • Huttada L, Hiremath M, D’Souza N. Enhancing the activity of peroxisome proliferator-activated receptor’s (PPAR) activity through natural ligand binding in diabetes: substantial computational approach. Nat Prod Chem Res. 2016;4(3):2–7.
  • Ogunyinka BI, Oyinloye BE, Osunsanmi FO, et al. Comparative study on proximate, functional, mineral, and antinutrient composition of fermented, defatted, and protein isolate of Parkia biglobosa seed. Food Sci Nutri. 2017;5(1):139–147.
  • Gloria NE, Babajide OE, Olufunmilola OO, et al. Comprehensive investigation into the nutritional composition of dehulled and defatted African locust bean seed (Parkia biglobosa). Afr J Plant Sci. 2011;5(5):291–295.
  • Oyedemi SO, Eze K, Aiyegoro OA, et al. Computational, chemical profiling and biochemical evaluation of antidiabetic potential of Parkia biglobosa stem bark extract in type 2 model of rats. J Biomol Struct Dynamics. 2022;40(20):9948–9961.
  • Ibrahim MA, Habila JD, Koorbanally NA, et al. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J Ethnopharmacol. 2016;183:103–111.
  • Odetola A, Akinloye O, Egunjobi C, et al. Possible antidiabetic and antihyperlipidaemic effect of fermented parkia biglobosa (Jacq) extract in alloxan‐induced diabetic rats. Clin Exp Pharmacol Physiol. 2006;33(9):808–812.
  • Ajebli M, Khan H, Eddouks M. Natural alkaloids and diabetes mellitus: a review. Endocr Metab Immune Disord Drug. 2021;21(1):111–130.
  • Tshabalala T, Ndhlala A, Ncube B, et al. Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. South Afri J Bot. 2020;129:106–112.
  • Ashfaq M, Basra SM, Ashfaq U. Moringa: a miracle plant for agro-forestry. J Agric Soc Sci. 2012;8(3):115–122.
  • Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam.(Moringaceae) in Nigeria. J Ethnopharmacol. 2013;150(2):682–691.
  • Anwar F, Latif S, Ashraf M, et al. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res. 2007;21(1):17–25.
  • Raj AJ, Gopalakrishnan VK, Yadav SA, et al. Antimicrobial activity of Moringa oleifera (Lam.) root extract. J Pharm Res. 2011;4(5):1426–1427.
  • Leone A, Spada A, Battezzati A, et al. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16(6):12791–12835.
  • Al-Ishaq RK, Abotaleb M, Kubatka P, et al. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430.
  • Bamagous GA, Al Ghamdi SS, Ibrahim IAA, et al. Antidiabetic and antioxidant activity of ethyl acetate extract fraction of Moringa oleifera leaves in streptozotocin-induced diabetes rats via inhibition of inflammatory mediators. Asian Pac J Tropical Biomedicine. 2018;8(6):320.
  • Omodanisi EI, Aboua YG, Oguntibeju OO. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male Wistar rats. Molecules. 2017;22(4):439.
  • Jaiswal D, Rai PK, Kumar A, et al. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009;123(3):392–396.
  • Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Bio Med Res Int. 2015;1–13. DOI:10.1155/2015/381040
  • Ali MM, Asrafuzzaman M, Tusher M, et al. Comparative study on antidiabetic effect of ethanolic extract of jute leaf on neonatal streptozotocin-induced type-2 diabetic model rat. J Pharm Res Int. 2020;32(31):60–71.
  • Omeje KO, Ezike TC, Omeje HC, et al. Effect of ethanol extract of Corchorus olitorus leaf on glucose level and antioxidant enzymes of Streptozotocin-induced hyperglycemic rat. Biokemistri. 2016;28(3):121–127.
  • Chigurupati S, Aladhadh HS, Alhowail A, et al. Phytochemical composition, antioxidant and antidiabetic potential of methanolic extract from Corchorus olitorius Linn. grown in Saudi Arabia. Med Plants Int J Phytomed Relat Ind. 2020;12(1):71–76.
  • Mohammed A, Luka C, Ngwen A, et al. Evaluation of the effect of aqueous leaf extract of jute mallow Corchorus olitorius on some biochemical parameters in alloxan-induced diabetic rats. Eur J Pharm Med Res. 2019;6(10):652–658.
  • Agu KC, Eluehike N, Ofeimun RO, et al. Possible anti-diabetic potentials of Annona muricata (soursop): inhibition of α-amylase and α-glucosidase activities. Clin Phytoscience. 2019;5(1):1–13.
  • Ratya A. Antidiabetic potential of soursop leaf extract (Annona muricata L.) as a treatment for type 2 diabetes mellitus. J Agromed. 2014;1(1):61–66.
  • Yonas M, Garedew W, Debela A. Multivariate analysis among okra (Abelmoschus esculentus (L.) Moench) collection in South Western Ethiopia. J Plant Sci. 2014;9(2):43–50.
  • Durazzo A, Lucarini M, Novellino E, et al. Abelmoschus esculentus (L.): bioactive components’ beneficial properties—focused on antidiabetic role—for sustainable health applications. Molecules. 2018;24(1):38–50.
  • Liu J, Zhao Y, Wu Q, et al. Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity. Food Chem. 2018;242:211–216.
  • Liao Z, Zhang J, Liu B, et al. Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model. Molecules. 2019;24(10):1906.
  • Yaradua I, Ibrahim M, Matazu K, et al. Antidiabetic activity of Abelmoschus esculentus (Ex-Maradi Okra) fruit in alloxan-induced diabetic rats. Niger J Biochem Mol Biol. 2017;32(1):44–52.
  • Subrahmanyam G, Sushma M, Alekya A, et al. Antidiabetic activity of Abelmoschus esculentus fruit extract. Int J Res Pharm Chem. 2011;1:17–20.
  • Anthony OE, Ese AC, Lawrence EO. Regulated effects of Capsicum frutescens supplemented diet (C.F.S.D) on fasting blood glucose level, biochemical parameters and body weight in alloxan induced diabetic Wistar rats. Br J Pharm Res. 2013;3(3):496–507.
  • Jeszka-Skowron M, Zgoła-Grześkowiak A, Grześkowiak T, et al. Analytical methods in the determination of bioactive compounds and elements in food. New York City: Springer; 2021.
  • Watcharachaisoponsiri T, Sornchan P, Charoenkiatkul S, et al. The α-glucosidase and α-amylase inhibitory activity from different chili pepper extracts. Int Food Res J. 2016;23(4):1439–1445.
  • Dougnon TJ, Gbeassor M. Evaluation of the effects of the powder of Capsicum frutescens on glycemia in growing rabbits. Vet World. 2016;9(3):281–286.
  • Kim HK, Jeong J, Kang EY, et al. Red pepper (Capsicum annuum L.) seed extract improves glycemic control by inhibiting hepatic gluconeogenesis via phosphorylation of FOXO1 and AMPK in obese diabetic db/db mice. Nutrients. 2020;12(9):2546.
  • Forino M, Stiuso P, Lama S, et al. Bioassay-guided identification of the antihyperglycaemic constituents of walnut (Juglans regia) leaves. J Funct Foods. 2016;26:731–738.
  • Hardman WE. Walnuts have potential for cancer prevention and treatment in mice. J Nutr. 2014;144(4):555S–560S.
  • Hosseini S, Huseini HF, Larijani B, et al. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: a first human trial. DARU J Pharma Sci. 2014;22:1–5.
  • Nour V, Trandafir I, Cosmulescu S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J Chromatogr Sci. 2013;51(9):883–890.
  • Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol. 2011;670(1):311–316.
  • Ghiravani Z, Hosseini M, Taheri MMH, et al. Evaluation of hypoglycemic and hypolipidemic effects of internal septum of walnut fruit in alloxan-induced diabetic rats. Afr J Traditional Complementary Altern Med. 2016;13(2):94–100.
  • Hussain F, Bashir S, Bashir S. Antioxidant, antidiabetic and structural analysis of Spinacia oleracea leaf. Pakistan J Biochem Biotechnol. 2022;3(1):1–11.
  • El Barky AR, Hussein S, Alm-Eldeen A, et al. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017;7(1):148–158.
  • Shaheen SM, Ohidul I, Azad K, et al. Phytochemical profiling and evaluation of antioxidant and antidiabetic activity of methanol extract of spinach (Spinacia oleracea L.) leaves. Int J Pharm Sci Scient Res. 2018;4(1):24–27.
  • Elbadrawy E, Sello A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian J Chem. 2016;9:Supp. 2 S1010–S1018.
  • Navarro-González I, García-Alonso J, Periago MJ. Bioactive compounds of tomato: cancer chemopreventive effects and influence on the transcriptome in hepatocytes. J Funct Foods. 2018;42:271–280.
  • Ali MM, Agha FG. Amelioration of streptozotocin‐induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest. 2009;69(3):371–379.
  • Figueiredo-Gonzalez M, Valentao P, Andrade PB. Tomato plant leaves: from by-products to the management of enzymes in chronic diseases. Ind Crops Prod. 2016;94:621–629.
  • Ademosun O, Oboh G, Adewuni T, et al. Antioxidative properties and inhibition of key enzymes linked to type-2 diabetes by snake tomato (Tricosanthes cucumerina) and two tomato (Lycopersicon esculentum) varieties. Afr J Pharm Pharmacol. 2013;7(33):2358–2365.
  • Razzaq PA, Iftikhar M, Faiz A, et al. A comprehensive review on antidiabetic properties of turmeric. Life Sci J. 2020;17(10):26–39.
  • Lekshmi P, Arimboor R, Raghu K, et al. Turmerin, the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Nat Prod Res. 2012;26(17):1654–1658.