456
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Intrahippocampal dose-dependent effects of aluminum injection on affective and cognitive response in male Wistar rat: potential role of oxidative stress

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 460-475 | Received 18 Mar 2023, Accepted 21 Jun 2023, Published online: 29 Jun 2023

References

  • Exley C. Human exposure to aluminium. Environ Sci Processes Impacts. 2013;15(10):1807–1816. doi: 10.1039/C3EM00374D
  • WHO, Nations F and AO of the U, Joint FAO/WHO Expert Committee on Food Additives. Meeting (74th: 2011: Rome I. Evaluation of certain food additives and contaminants: seventy-fourth [74th] report of the Joint FAO/WHO expert committee on food additives. Geneva PP - Geneva: World Health Organization; 2011. https://apps.who.int/iris/handle/10665/44788.
  • Exley C, Mold MJ. The binding, transport and fate of aluminium in biological cells. J Trace Elem Med Biol. 2015;30:90–95. doi: 10.1016/j.jtemb.2014.11.002
  • Sanchez-Iglesias S, Soto-Otero R, Iglesias-Gonzalez J, et al. Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol. 2007;21:31–34. doi: 10.1016/j.jtemb.2007.09.010
  • Wang L. Entry aNd deposit of aluminum in the brain. Adv Exp Med Biol. 2018;1091:39–51. doi: 10.1007/978-981-13-1370-7_3
  • Mold M, Cottle J, Exley C. Aluminium in brain tissue in epilepsy: a case report from Camelford. IJERPH. 2019;16(12):2129. doi: 10.3390/ijerph16122129
  • Lukiw WJ, Kruck TPA, Percy ME, et al. Aluminum in neurological disease - a 36 year multicenter study. J Alzheimer’s Dis Parkinsonism. 2019;8. doi: 10.4172/2161-0460.1000457.
  • Exley C, Clarkson E. Aluminium in human brain tissue from donors without neurodegenerative disease: a comparison with Alzheimer’s disease, multiple sclerosis and autism. Sci Rep. 2020;10:7770. doi: 10.1038/s41598-020-64734-6
  • Zghari O, Rezqaoui A, Ouakki S, et al. Effect of chronic aluminum administration on affective and cognitive behavior in male and female rats. JBBS. 2018;8(04):179–196. doi: 10.4236/jbbs.2018.84012
  • Lamtai M, Zghari O, Azirar S, et al. Melatonin modulates copper-induced anxiety-like, depression-like and memory impairments by acting on hippocampal oxidative stress in rat. Drug Chem Toxicol. 2021;45(4):1707–1715. doi: 10.1080/01480545.2020.1858853
  • Lamtai M. Neuroprotective effect of melatonin on nickel-induced affective and cognitive disorders and oxidative damage in rats. Environ Anal Health Toxicol. 2020;35(4):35. doi: 10.5620/eaht.2020025
  • Naila N, Makthar W, Lamtai M, et al. Effect of intra-hippocampal lead injection on affective and cognitive disorders in male WISTAR rats: possible involvement of oxidative stress. E3S Web Conf. 2021;319:2017. doi: 10.1051/e3sconf/202131902017
  • Hao Y, Li M, Zhang J, et al. Aluminum-induced “mixed” cell death in mice cerebral tissue and potential intervention. Neurotox Res. 2020;37(4):835–846. doi: 10.1007/s12640-019-00123-w
  • Skalny AV, Aschner M, Jiang Y, et al. Chapter one - molecular mechanisms of aluminum neurotoxicity: update on adverse effects and therapeutic strategies. In: Aschner M Costa L, editors. Neurotoxicity of metals: old issues and new developments. Academic Press; 2021. pp. 1–34. https://www.sciencedirect.com/science/article/pii/S2468748020300175.
  • Chavali VD, Agarwal M, Vyas VK, et al. Neuroprotective effects of ethyl pyruvate against aluminum chloride-induced Alzheimer’s disease in rats via inhibiting toll-like receptor 4. J Mol Neurosci. 2020;70:836–850. doi: 10.1007/s12031-020-01489-9
  • Neely CLC, Lippi SLP, Lanzirotti A, et al. Localization of free and bound metal species through X-Ray synchrotron fluorescence microscopy in the rodent brain and their relation to behavior. Brain Sci. 2019;9(4):9. doi: 10.3390/brainsci9040074
  • Zghari O, Lamtai M, Azirar S, et al. Neuroprotective effects of melatonin against neurotoxicity induced by intrahippocampal injection of aluminum in male wistar rats: possible involvement of oxidative stress pathway. AAVS. 2023;11(5):711–719. doi: 10.17582/journal.aavs/2023/11.5.711.719
  • Ferry B, Gervasoni D, Vogt C. Stereotaxic neurosurgery in laboratory rodent: handbook on best practices. Springer Paris. No. 15550. doi: 10.1007/978-2-8178-0472-9
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th Edition ed. Academic Press, San Diego. 2007.
  • Carola V, D’Olimpio F, Brunamonti E, et al. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. 2002;134(1–2):49–57. doi: 10.1016/S0166-4328(01)00452-1
  • Gentsch C, Lichtsteiner M, Feer H. Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res. 1987;25(2):101–107. doi: 10.1016/0166-4328(87)90003-9
  • Naranjo-Rodriguez EB, Osornio AO, Hernandezavttia E, et al. Anxiolytic-like actions of melatonin, 5-metoxytryptophol, 5-hydroxytryptophol and benzodiazepines on a conflict procedure. Prog Neuro Psychopharmacol Biol Psychiatry. 2000;24(1):117–129. doi: 10.1016/S0278-5846(99)00075-5
  • Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391. doi: 10.1016/0014-2999(78)90118-8
  • Sierksma ASR, Van Den Hove DLA, Pfau F, et al. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. Neuropharma-cology. 2014;77:120–130. doi: 10.1016/j.neuropharm.2013.09.015
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 2008;11(1):47–60. doi: 10.1016/016510270(84)9000714
  • Wong AA, Brown RE. Age-related changes in visual acuity, learning and memory in C57BL/6J and DBA/2J mice. Neurobiol Aging. 1984;11:47–60. doi: 10.1016/j.etap.2010.03.007
  • Kahloula K, Adli D, Slimani M, et al. Effet de l ’ exposition chronique au nickel sur les fonctions neurocomportementales chez les rats Wistar pendant la période de développement. Toxicologie Analytique et Clinique. 2014;26(4):186–192. doi: 10.1016/j.toxac.2014.09.056
  • Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431. doi: 10.1016/0076-6879(90)86135-i
  • Freitas RM, Sousa FCF, Vasconcelos SMM, et al. Pilocarpine-induced status epilepticus in rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharmacol Biochem Behav. 2004;78(2):327–332. doi: 10.1016/j.pbb.2004.04.004
  • Chao CC, Hu S, Molitor TW, et al. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149(8):2736–2741. Md : 1950). doi: 10.4049/jimmunol.149.8.2736
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–287. http://www.sciencedirect.com/science/article/pii/0003269771903708
  • Freire MAM, Faber J, Picanço-Diniz CW, et al. Morphometric variability of nicotinamide adenine dinucleotide phosphate diaphorase neurons in the primary sensory areas of the rat. Neuroscience. 2012;205:140–153. doi: 10.1016/j.neuroscience.2011.12.029.
  • Zhu Y, Liu F, Zou X, et al. Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. J Neurosci Methods. 2015;254:73–79. Available from: https://www.sciencedirect.com/science/article/pii/S0165027015002770
  • Bittencourt LO, Damasceno-Silva RD, Aragão W, et al. Global proteomic profile of aluminum-induced hippocampal impairments in rats: are low doses of aluminum really safe? Int J Mol Sci. 2022;23(20):12523. doi: 10.3390/ijms232012523
  • Benyettou I, Kharoubi O, Hallal N, et al. Aluminium-induced behavioral changes and oxidative stress in developing rat brain and the possible ameliorating role of omega-6/omega-3 ratio. J of Biological Sciences. 2017;17(3):106–117. doi: 10.3923/jbs.2017.106.117
  • Rebai O, Djebli NE. Chronic exposure to aluminum chloride in mice: exploratory behaviors and spatial learning. Adv Biol Res. 2008;2:26–33.
  • Taïr K, Kharoubi O, Taïr OA, et al. Aluminium-induced acute neurotoxicity in rats: treatment with aqueous extract of Arthrophytum (Hammada scoparia). J Acute Dis. 2016;5(6):470–482. doi: 10.1016/j.joad.2016.08.028
  • Cao Z, Yang X, Zhang H, et al. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere. 2016;151:289–295. doi: 10.1016/j.chemosphere.2016.02.092
  • Auti ST, Kulkarni YA. Neuroprotective effect of cardamom oil against aluminum induced neurotoxicity in rats. Front Neurol. 2019 10;10. doi: 10.3389/fneur.2019.00399
  • Maya S, Prakash T, Madhu KD, et al. Multifaceted effects of aluminium in neurodegenerative diseases: a review. Biomed Pharmacother. 2016;83:746–754. doi: 10.1016/j.biopha.2016.07.035
  • Syed Umesalma SA. Protective effect of centella asiatica against aluminium-induced neurotoxicity in cerebral cortex, striatum, hypothalamus and hippocampus of rat brain- histopathological, and biochemical approach. J Mol Biomark Diagn. 2015;6(01):1–7. doi: 10.4172/2155-9929.1000212
  • Zhang H, Wang P, Yu H, et al. Aluminum trichloride-induced hippocampal inflammatory lesions are associated with IL-1β-activated IL-1 signaling pathway in developing rats. Chemosphere. 2018;203:170–178. doi: 10.1016/j.chemosphere.2018.03.162
  • Bharathi SN, Sathyanarayana Rao TS, Dhanunjaya Naido M, et al. A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Research Reviews. 2006;52(2):275–292. doi: 10.1016/j.brainresrev.2006.04.003.
  • Walton JR. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer’s disease. Neurotoxicology. 2009;30:1059–1069. doi: 10.1016/j.neuro.2009.06.010
  • Aremu DA, Meshitsuka S. Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res. 2005;1031(2):284–296. doi: 10.1016/j.brainres.2004.06.090
  • Zaky A, Mohammad B, Moftah M, et al. Apurinic/Apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci. 2013;14(1):1–12. doi: 10.1186/1471-2202-14-26
  • Al-Olayan EM, El-Khadragy MF, Moneim AEA. The protective properties of melatonin against aluminium-induced neuronal injury. Int J Exp Path. 2015;96(3):196–202. doi: 10.1111/iep.12122
  • Moncada S, Bolaños JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006;97(6):1676–1689. doi: 10.1111/j.1471-4159.2006.03988.x
  • Wang B, Xing W, Zhao Y, et al. Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol. 2010;29(3):308–313. doi: 10.1016/j.etap.2010.03.007
  • Cui X, Wang B, Zong Z, et al. The effects of chronic aluminum exposure on learning and memory of rats by observing the changes of Ras/Raf/ERK signal transduction pathway. Food Chem Toxicol. 2012;50(2):315–319. doi: 10.1016/j.fct.2011.10.072
  • Kushkuley J, Metkar S, Chan WK-H, et al. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms. Brain Res. 2010;1322:118–123. doi: 10.1016/j.brainres.2010.01.075
  • Fernandes RM, Corrêa MG, Aragão WAB, et al. Preclinical evidences of aluminum-induced neurotoxicity in hippocampus and pre-frontal cortex of rats exposed to low doses. Ecotoxicol Environ Saf. 2020;206:111139. doi: 10.1016/j.ecoenv.2020.111139