126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of melatonin, galectin-3, TGF-β1, and NF-κB in hypertrophic scar patients

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 424-434 | Received 26 Mar 2024, Accepted 12 May 2024, Published online: 17 May 2024

References

  • Wight TN, Potter-Perigo S. The extracellular matrix: an active or passive player in fibrosis? Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G950–G955. doi: 10.1152/ajpgi.00132.2011
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Med. 2012;18(7):1028–1040. doi: 10.1038/nm.2807
  • Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587(7835):555–566. doi: 10.1038/s41586-020-2938-9
  • Horowitz JC, Thannickal VJ. Mechanisms for the resolution of organ fibrosis. Physiology. 2019;34(1):43–55. doi: 10.1152/physiol.00033.2018
  • Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspect Med. 2019;65:2–15. doi: 10.1016/j.mam.2018.06.003
  • Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: A cellular perspective. Physiol Rev. 2019;99(1):665–706. doi: 10.1152/physrev.00067.2017
  • Eremenko E, Ding J, Kwan P, et al. The biology of extracellular matrix proteins in hypertrophic scarring. Adv Wound Care. 2022;11(5):234–254. doi: 10.1089/wound.2020.1257
  • Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care. 2015;4(3):119–136. doi: 10.1089/wound.2013.0485
  • Finnerty CC, Jeschke MG, Branski LK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388(10052):1427–1436. doi: 10.1016/s0140-6736(16)31406-4
  • Schaffrick L, Ding J, Kwan P, et al. Molecular features of hypertrophic scars after thermal injury: is there a biologic basis for laser therapy? Adv Wound Care. 2022;11(4):163–178. doi: 10.1089/wound.2021.0060
  • Limandjaja GC, Niessen FB, Scheper RJ, et al. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol. 2020;30(1):146–161. doi: 10.1111/exd.14121
  • Chaudhari N, Findlay AD, Stevenson AW, et al. Topical application of an irreversible small molecule inhibitor of lysyl oxidases ameliorates skin scarring and fibrosis. Nat Commun. 2022;13(1). doi: 10.1038/s41467-022-33148-5
  • Frech FS, Hernandez L, Urbonas R, et al. Hypertrophic scars and keloids: Advances in treatment and review of established therapies. Am J Clin Dermatol. 2023;24(2):225–245. doi: 10.1007/s40257-022-00744-6
  • Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol. 2017;175(16):3230–3238. doi: 10.1111/bph.13898
  • Venegas C, García JA, Escames G, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2011;52(2):217–227. doi: 10.1111/j.1600-079x.2011.00931.x
  • Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2
  • Reiter RJ, Mayo JC, Tan D, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360
  • Mahmoud H, Hashim M, Ahmed O, et al. correlation between serum melatonin level and other indicators with stages of diabetic retinopathy. Egypt J Clin Ophthalmol. 5(2):151–160. doi: 10.21608/ejco.2022.280978
  • Aranda ML, González Fleitas MF, De Laurentiis A, et al. Neuroprotective effect of melatonin in experimental optic neuritis in rats. J Pineal Res. 2016;60(3):360–372. doi: 10.1111/jpi.12318
  • Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 2016;61(4):411–425. doi: 10.1111/jpi.12362
  • Majidinia M, Reiter RJ, Shakouri SK, et al. The multiple functions of melatonin in regenerative medicine. Ageing Res Rev. 2018;45:33–52. doi: 10.1016/j.arr.2018.04.003
  • Zhang JC, Xie YF, Liu SJ, Dai LB, & Li JP. The expression of melatonin receptor in human hypertrophic scar, China. J Plastic Surg. 2010;26(3):203–207. PMID: 20737950.
  • Harvey A, Montezano AC, Lopes RA, et al. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016a;32(5):659–668. doi: 10.1016/j.cjca.2016.02.070
  • Lubrano V, Balzan S. Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem. 2019;464(1–2):143–152. doi: 10.1007/s11010-019-03656-y
  • Fulton DJR, Li X, Bordan Z, et al. Galectin-3: A harbinger of reactive oxygen species, fibrosis, and inflammation in pulmonary arterial hypertension. Antioxid Redox Signaling. 2019b;31(14):1053–1069. doi: 10.1089/ars.2019.7753
  • Mendonça HR, Carpi-Santos R, da Costa Calaza K, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res. 2020;15(4):625–635. doi: 10.4103/1673-5374.266910
  • Ali FEM, Bakr AG, Abo-Youssef AM, et al. Targeting Keap-1/Nrf-2 pathway and cytoglobin as a potential protective mechanism of diosmin and pentoxifylline against cholestatic liver cirrhosis. Life Sci. 2018a;207:50–60. doi: 10.1016/j.lfs.2018.05.048
  • Faul F, Erdfelder E, Lang AG. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi: 10.3758/BF03193146
  • Sullivan T, Smith J, Kermode J, et al. Courtemanche, rating the burn scar. J Burn Care Res. 1990;11(3):256–260. doi: 10.1097/00004630-199005000-00014
  • Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Delivery Rev. 2019;146:37–59. doi: 10.1016/j.addr.2018.08.009
  • Reiter RJ, Tan DX, Korkmaz A, et al. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Human Reprod Update. 2014;20(2):293–307. doi: 10.1093/humupd/dmt054
  • Reiter R, Rosales-Corral S, Manchester L, et al. Melatonin in the biliary tract and liver: health implications. Curr Pharm Des. 2014;20(30):4788–4801. doi: 10.2174/1381612819666131119105826
  • Brzozowski T, Jaworek J. Editorial (thematic issues: Basic and clinical aspects of melatonin in the gastrointestinal tract. New advancements and future perspectives). Curr Pharm Des. 2014;20(30):4785–4787. doi: 10.2174/1381612819666131119111201
  • Mauriz JL, Collado PS, Veneroso C, et al. A review of the molecular aspects of melatonin’s anti‐inflammatory actions: recent insights and new perspectives. J Pineal Res. 2012;54(1):1–14. doi: 10.1111/j.1600-079x.2012.01014.x
  • Markus RP, Cecon E, Pires-Lapa MA. Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci. 2013;14(6):10979–10997. doi: 10.3390/ijms140610979
  • Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2018;175(16):3263–3280. doi: 10.1111/bph.13950
  • Dong Y, Cao X, Huang J, et al. Melatonin inhibits fibroblast cell functions and hypertrophic scar formation by enhancing autophagy through the MT2 receptor-inhibited PI3K/Akt/mTOR signaling. Biochim Biophys Acta Mol Basis Dis. 2024;1870(1):166887. doi: 10.1016/j.bbadis.2023.166887
  • Franco DG, Markus RP, Vaudry H. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture. PLOS ONE. 2014;9(9):e106332. doi: 10.1371/journal.pone.0106332
  • Mauriz JL, Collado PS, Veneroso C, et al. A review of the molecular aspects of melatonin’s anti‐inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013;54(1):1–14. doi: 10.1111/j.1600-079X.2012.01014.x
  • Bona S, Rodrigues G, Moreira AJ, et al. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open: An Open Access J Gastroenterol Hepatol. 2018;2(4):117–123. doi: 10.1002/jgh3.12055
  • Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules. 2020;10(3):389. doi: 10.3390/biom10030389
  • Fenton-Navarro B, Ríos DG, Torner L, et al. Melatonin decreases circulating levels of galectin-3 and cytokines, motor activity, and anxiety following acute global cerebral ischemia in male rats. Arch Med Res. 2021;52(5):505–513. doi: 10.1016/j.arcmed.2021.01.009
  • Lan YJ, Cheng MH, Ji HM, et al. Melatonin ameliorates bleomycin-induced pulmonary fibrosis via activating NRF2 and inhibiting galectin-3 expression. Acta Pharmacol Sin. 2023;44(5):1029–1037. doi: 10.1038/s41401-022-01018-x
  • Koopmans SM, Schouten HC, van Marion AMW. Anti-apoptotic pathways in bone marrow and megakaryocytes in myeloproliferative neoplasia. Pathobiology. 2013;81(2):60–68. doi: 10.1159/000356187
  • Song X, Qian X, Shen M, et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim Biophys Acta, Mol Cell Res. 2015;1853(2):513–521. doi: 10.1016/j.bbamcr.2014.12.001
  • Peng Y, Wu S, Tang Q, et al. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 2019;294(21):8361–8370. doi: 10.1074/jbc.RA118.006189
  • Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol. 2018;10(4):a022293. doi: 10.1101/cshperspect.a022293