133
Views
0
CrossRef citations to date
0
Altmetric
Original article

Modulatory role of Annona squamosa extract against streptozotocin-induced diabetic nephropathy in male rats

, , , , &
Pages 536-556 | Received 04 Apr 2024, Accepted 06 Jun 2024, Published online: 13 Jun 2024

References

  • Singh S, Kushwah V, Agrawal AK, et al. Insulin- and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine (Lond). 2018;13(5):521–537. doi: 10.2217/nnm-2017-0278
  • Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174–188. doi: 10.4103/ajm.ajm_53_20
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547–553. doi: 10.1016/j.jsps.2015.03.013
  • Xue R, Gui D, Zheng L, et al. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J Diabetes Res. 2017;2017:(1839809–09). doi: 10.1155/2017/1839809
  • Thrailkill KM, Nimmo T, Bunn RC, et al. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin. Diabetes Care. 2009;32(7):1266–1268. doi: 10.2337/dc09-0112
  • Habib SL. Kidney atrophy vs hypertrophy in diabetes: which cells are involved? cell cycle (Georgetown, Tex. Cell Cycle. 2018;17(14):1683–1687. doi: 10.1080/15384101.2018.1496744
  • Charles MA, Leslie RD. Diabetes: concepts of β-cell organ dysfunction and failure would lead to earlier diagnoses and prevention. Diabetes. 2021;70(11):2444–2456. doi: 10.2337/dbi21-0012
  • de Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: A consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes care. 2022;45(12):3075–3090. doi: 10.2337/dci22-0027
  • Fayfman M, Pasquel FJ, Umpierrez GE. Management of hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state. The medical clinics of North America. Med Clin North Am. 2017;101(3):587–606. doi: 10.1016/j.mcna.2016.12.011
  • Sahakyan G, Vejux A, Sahakyan N. The role of oxidative stress-mediated inflammation in the development of t2dm-induced diabetic nephropathy: possible preventive action of tannins and other oligomeric polyphenols. Molecules (Basel, Switzerland), 2022;27(24):9035. doi: 10.3390/molecules27249035
  • Gomes IBS, Porto ML, Santos MCLFS, et al. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis. 2014;13(1):13(184–84. doi: 10.1186/1476-511X-13-184
  • Park S, Lim W, Bazer FW, et al. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRnas in vitro and in vivo. J Nutr Biochem. 2019;63(87):87–100. doi: 10.1016/j.jnutbio.2018.09.024
  • Sharma D, Gondaliya P, Tiwari V, et al. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomedicine & Pharmacotherapy. 2019;109(1610–19). doi: 10.1016/j.biopha.2018.10.195 109
  • de Carvalho JAM, Tatsch E, Hausen BS, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem. 2016;49(3):232–236. doi: 10.1016/j.clinbiochem.2015.10.016
  • He P, Bai M, J-P H, et al. Significance of neutrophil gelatinase-associated lipocalin as a biomarker for the diagnosis of diabetic kidney disease: a systematic review and meta-analysis. Kidney Blood Pressure Res. 2020;45(4):497–509. doi: 10.1159/000507858
  • Nithya R, Subramanian S. Sinapic acid, a naturally occurring carboxylic acid derivative ameliorates hyperglycemia in high fat diet-low dose stz induced experimental diabetic rats. Int J Sci Eng Tech Res. 2015:4(5746–50).
  • Klein G, Kim J, Himmeldirk K, et al. Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. Evid Based Complement Alternat Med. 2007;4(4):401–407. doi: 10.1093/ecam/nem013
  • Spiller HA. Toxicology of oral antidiabetic medications. Am J Health Syst Pharm. 2006;63(10):929–938. doi: 10.2146/ajhp050500
  • Shokeen P, Anand P, Murali YK, et al. Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem Toxicol. 2008;46(11):3458–3466. doi: 10.1016/j.fct.2008.08.020
  • Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014;109(1):8–14. doi: 10.1016/j.lfs.2014.06.005
  • Stenvinkel P, Painer J, Kuro-O M, et al. Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol. 2018;14(4):265–284. doi: 10.1038/nrneph.2017.169
  • Ansari P, Hannan JMA, Seidel V, et al. Polyphenol-rich leaf of annona squamosa stimulates insulin release from brin-bd11 cells and isolated mouse islets, reduces (ch(2)o)(n) digestion and absorption, and improves glucose tolerance and glp-1 (7-36) levels in high-fat-fed rats. Metabolites. 2022;12(10):995. doi: 10.3390/metabo12100995
  • Arumugam G, Manjula P, Paari N. A review: anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis. 2013;2(3):196–200. doi: 10.1016/s2221-6189(13)60126-2
  • Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology (Basel). 2020;9(9):252. doi: 10.3390/biology9090252
  • Ansari P, Flatt PR, Harriott P, et al. Evaluation of the Antidiabetic and Insulin Releasing Effects of A. squamosa, Including Isolation and Characterization of Active Phytochemicals. Plants (Basel, Switzerland), 2020;9(10):1348. doi: 10.3390/plants9101348
  • Pandey K, Sinha A, Perween Z. Important medicinal plants with their medicinal uses from Jharkhand State. Int J Of Research In Engineering, Science And Management. 2020;3(8):532–542.
  • Mariod AA, Abdelwahab SI, Elkheir S, et al. Antioxidant activity of different parts from Annona squamosa, and Catunaregam nilotica methanolic extract. Acta Sci Polonorum Technologia Aliment. 2012;11(3):249–258.
  • Saelee C, Thongrakard V, Tencomnao T. Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-κB signaling biomarkers in HaCaT keratinocytes. Molecules (Basel, Switzerland), 2011;16(5):3908–3932. doi: 10.3390/molecules16053908
  • Tomar RS, Sisodia SS. Antidiabetic activity of Annona squamosa L. in experimental induced diabetic rats. Int J PharmInt J Pharm Biol Arch. 2012;3:1492–1495.
  • Sangala R, Kodati D, Burra S, et al. Evaluation of antidiabetic activity of Annona squamosa Linn Seed in alloxan–induced diabetic rats. Diabetes. 2011;2(1):100–106.
  • Uduman TS, Sundarapandian R, Muthumanikkam A, et al. Protective effect of methanolic extract of Annona squamosa Linn in isoniazid-rifampicin induced hepatotoxicity in rats. Pak J Pharm Sci. 2011;24(2):129–134.
  • Gupta RK, Kesari AN, Diwakar S, et al. In vivo evaluation of anti-oxidant and anti-lipidimic potential of Annona squamosa aqueous extract in type 2 diabetic models. J Ethnopharmacol. 2008;118(1):21–25. doi: 10.1016/j.jep.2008.03.008
  • Bhat R, Paliyath G. Fruits of tropical climates: Dietary importance and health benefits. Encycl Food Health. 2016, Elsevier. p. 144–149.
  • Tong F, Liu S, Yan B, et al. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. IJN. 2017;12(7799–813):7799–7813. doi: 10.2147/IJN.S146978
  • Shehata MG, Abu-Serie MM, Abd El-Aziz NM, et al. Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (Annona squamosa) fruits. Sci Rep. 2021;11(1):6224–24. doi: 10.1038/s41598-021-85772-8
  • Davis JA, Sharma S, Mittra S, et al. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J Pharmacol. 2012;44(3):326–332. doi: 10.4103/0253-7613.96304
  • Lu Q, Ji X-J, Zhou Y-X, et al. Quercetin inhibits the mTorc1/p70s6k signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res. 2015;99(237–47). doi: 10.1016/j.phrs.2015.06.006
  • Yue T, Xu H-L, Chen P-P, et al. Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int J Pharmaceut. 2017;528(1–2):664–674. doi: 10.1016/j.ijpharm.2017.06.070
  • Rahmati M, Keshvari M, Mirnasouri R, et al. Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed Pharmacother. 2021;139(111577):111577. doi: 10.1016/j.biopha.2021.111577
  • Vaidya VS, Waikar SS, Ferguson MA, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200–208. doi: 10.1111/j.1752-8062.2008.00053.x
  • Jaffe M. About the rainfall, which picric acid in normal urine generated and a new reaction of creatinine. Z PhysZ Physiol Chern. 1986;10(391–400).
  • Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 1972;97(1151):142. doi: 10.1039/an9729700142
  • Nishi AA, Kumar P. Protective effect of chlorogenic acid against diabetic nephropathy in high fat diet/streptozotocin induced type-2 diabetic rats. Int J Pharm Pharm Sci. 2013;5:489–495.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169. Available from: https://www.ncbi.nlm.nih.gov/pubmed/6066618
  • Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(5):715S–725S. doi: 10.1093/ajcn/57.5.715s
  • Suvarna KS, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques E-Book. Elsevier health sciences; 2018.
  • Hussein AM, Ahmed OM. Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem. 2010;18(7):2639–2644. doi: 10.1016/j.bmc.2010.02.028
  • Watal G, Dhar P, Srivastava SK, et al. Herbal medicine as an alternative medicine for treating diabetes: the global burden. Evid Based Complement Alternat Med. 2014;2014(596071–71):1–2. doi: 10.1155/2014/596071
  • Nasiri A, Ziamajidi N, Abbasalipourkabir R, et al. Beneficial effect of aqueous garlic extract on inflammation and oxidative stress status in the kidneys of type 1 diabetic rats. Ind J Clin Biochem. 2017;32(3):329–336. doi: 10.1007/s12291-016-0621-6
  • Alam S, Sarker MMR, Sultana TN, et al. Antidiabetic Phytochemicals from medicinal plants: Prospective candidates for new drug discovery and Development. Front Endocrinol. 2022;13:800714–14. doi: 10.3389/fendo.2022.800714
  • Marahatta AB, Aryal A, Basnyat RC, et al. The phytochemical and nutritional analysis and biological activity of Annona squamosa Linn. Int J Herb Med. 2019:7(19–28).
  • Chamberlain JJ, Rhinehart AS, Shaefer CF, et al. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association standards of medical care in diabetes. Ann internal med. 2016;164(8):542. doi: 10.7326/m15-3016
  • Rezagholizadeh L, Pourfarjam Y, Nowrouzi A, et al. Effect of Cichorium intybus L. on the expression of hepatic NF-κB and IKKβ and serum TNF-α in STZ− and STZ+ niacinamide-induced diabetes in rats. Diabetol Metab Syndr. 2016;8(1):11–11. doi: 10.1186/s13098-016-0128-6
  • Zafar M, Naeem-Ul-Hassan NS. Effects of STZ-Induced diabetes on the relative weights of Kidney, Liver and Pancreas in Albino Rats: A comparative study. Int J Morphol. 2010;28(1). doi: 10.4067/s0717-95022010000100019
  • Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in diabetic kidney disease. Front Cell Dev Biol. 2020;8(187–87). doi: 10.3389/fcell.2020.00187
  • Guerreiro Í, Ferreira-Pêgo C, Carregosa D, et al. Polyphenols and their metabolites in renal diseases: An overview. Foods (Basel, Switzerland), 2022;11(7):1060. doi: 10.3390/foods11071060
  • Costa EV, Pinheiro MLB, de Souza ADL, et al. Trypanocidal activity of oxoaporphine and pyrimidine-β-carboline alkaloids from the branches of Annona foetida Mart. (Annonaceae). Molecules (Basel, Switzerland), 2011;16(11):9714–9720. doi: 10.3390/molecules16119714
  • Mestry SN, Dhodi JB, Kumbhar SB, et al. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Tradit Complement Med. 2016;7(3):273–280. doi: 10.1016/j.jtcme.2016.06.008
  • Gupta RK, Kesari AN, Murthy PS, et al. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol. 2005;99(1):75–81. doi: 10.1016/j.jep.2005.01.048
  • Kumar M, Changan S, Tomar M, et al. Custard Apple (Annona squamosa L.) Leaves: Nutritional Composition. Phytochem Profile Health-Promoting Biol Act Biomol. 2021;11(5):614. doi: 10.3390/biom11050614
  • Onwusonye J, Uwakwe A, Patrick A, et al. Acute and sub-acute toxicity studies of methanol leaf extracts of Annona squamosa Linn. in mice. Sky J Biochem Res. 2014;3(7):53–59.
  • Rout SP, Kar DM, Maharana L. Anti-hyperglycemic effect of different fractions of annona reticulata leaf. Asian J Pharm Clin Res. 2016:256. doi: 10.22159/ajpcr.2016.v9s2.13710
  • Sivakumar S, Palsamy P, Subramanian SP. Impact of d-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact. 2010;188(1):237–245. doi: 10.1016/j.cbi.2010.07.014
  • Kumar S, Mondal H, Lata M, et al. Correlation of serum uric acid with lipid profile in patients with type 2 diabetes mellitus with normal creatinine level: Report from a tertiary care hospital in India. J Family Med Prim Care. 2022;11(6):3066–3070. doi: 10.4103/jfmpc.jfmpc_2131_21
  • Kaleem M, Medha P, Ahmed Q, et al. Beneficial effects of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J. 2008;49(10):800. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18946614
  • Adil M. Qualitative features and therapeutic value of custard apple fruit. Int J Food And Allied Sci. 2019;4(1):12–17.
  • Deshmukh AB, Patel JK. Aqueous extract of Annona squamosa (L.) ameliorates renal failure induced by 5/6 nephrectomy in rat. Indian J Pharmacol. 2011;43(6):718–721. doi: 10.4103/0253-7613.89834
  • Bianchi C, Donadio C, Tramonti G, et al. REAPPRAISAL of SERUM β2-MICROGLOBULIN as MARKER of GFR. Ren Fail. 2001;23(3–4):419–429. doi: 10.1081/jdi-100104725
  • Liabeuf S, Lenglet A, Desjardins L, et al. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82(12):1297–1303. doi: 10.1038/ki.2012.301
  • Wu H-C, Lee L-C, Wang W-J. Associations among serum beta 2 Microglobulin, malnutrition, inflammation, and advanced cardiovascular event in patients with chronic kidney disease. J Clin Lab Analysis. 2017;31(3):e22056. doi: 10.1002/jcla.22056
  • Kim MK, Yun KJ, Chun HJ, et al. Clinical utility of serum beta-2-microglobulin as a predictor of diabetic complications in patients with type 2 diabetes without renal impairment. Diabetes & Metabolism. 2014;40(6):459–465. doi: 10.1016/j.diabet.2014.08.002
  • Mwagandi Chimbevo L, Essuman S. Preliminary Screening of Nutraceutical Potential of Fruit Pulp, Peel and Seeds from Annona Squamosa (L.) and Annona Muricata (L.) Growing in Coast Region of Kenya. AJBIO. 2019;7(3):58. doi: 10.11648/j.ajbio.20190703.11
  • Korah MC, Rahman J, Rajeswari R, et al. Evaluation of diuretic efficacy and antiurolithiatic potential of ethanolic leaf extract of Annona squamosa Linn. In experimental animal models. Indian J Pharmacol. 2020;52(3):196–202. doi: 10.4103/ijp.IJP_92_18
  • Satyanarayana G, Keisham N, Batra HS, et al. Evaluation of serum ceruloplasmin levels as a biomarker for oxidative stress in patients with diabetic retinopathy. Cureus. 2021;13(2):e13070–e70. doi: 10.7759/cureus.13070
  • Nowak M, Wielkoszyński T, Marek B, et al. Antioxidant potential, paraoxonase 1, ceruloplasmin activity and C-reactive protein concentration in diabetic retinopathy. Clin Exp Med. 2009;10(3):185–192. doi: 10.1007/s10238-009-0084-7
  • Inoue K, Sakano N, Ogino K, et al. Relationship between ceruloplasmin and oxidative biomarkers including ferritin among healthy Japanese. J Clin Biochem Nutr. 2013;52(2):160–166. doi: 10.3164/jcbn.12-122
  • Mohora M, Vîrgolici B, Coman A, et al. Diabetic foot patients with and without retinopathy and plasma oxidative stress. Rom J Intern Med. 2007;45(1):51–57.
  • Lee MJ, Jung CH, Kang YM, et al. Serum ceruloplasmin level as a predictor for the progression of diabetic nephropathy in Korean Men with type 2 diabetes mellitus. Diabetes Metab J. 2015;39(3):230–239. doi: 10.4093/dmj.2015.39.3.230
  • Kothari V, Seshadri S. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. Nutr Food Sci. 2010;40(4):403–408. doi: 10.1108/00346651011062050
  • Albuquerque TG, Santos F, Sanches-Silva A, et al. Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: potential health benefits. Food Chem. 2016;193(187–95). doi: 10.1016/j.foodchem.2014.06.044
  • Jana S, Mitra P, Roy S. Proficient novel biomarkers guide early detection of acute kidney injury: A review. Diseases (Basel, Switzerland), 2022;11(1):8. doi: 10.3390/diseases11010008
  • Joshi A, Mathur A, Parashar R, et al. A Study of Role of Ngal in Diagnosis and Staging the Severity of Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients in Sms Medical College, Jaipur. J Assoc Physicians India. 2022;70(4):11–12. Available from: https://www.ncbi.nlm.nih.gov/pubmed/35443326
  • Hammoud MS, Baban RS, Ali SH. EVALUATION of URINARY KIDNEY INJURY MOLECULE-1 (KIM-1) as PROGNOSTIC BIOMARKER in CHILDREN with TYPE-1 DIABETIC NEPHROPATHY. Biochemical & Cellular Archive. 2021;21(1):715–719.
  • Dellai A, Maricic I, Kumar V, et al. Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and met-cherimolacyclopeptide B and their analogs. Bioorg Med ChemBioorganic & Medicinal Chemistry Letters. 2010;20(19):5653–5657. doi: 10.1016/j.bmcl.2010.08.033
  • Abd-Elrazek A, Shapana H, Shukry W, et al. Comparison between Annona squamosa, Annona cherimolia and Annona atemoya ethanolic extracts extenuative impact against oxidative stress, inflammation and apoptosis in rat kidney induced by Ifosfamid. Toxicol Res (Camb). 2021;10(4):947–958. doi: 10.1093/toxres/tfab078
  • Alkhalidy H, Al-Nabulsi A, Mhawish R, et al. Low-dose of phenolic rich extract from Annona squamosa Linn leaves ameliorates insulin sensitivity and reduces body weight gain in HF diet-induced obesity. Front Nutr. 2023;10:10(1146021–21. doi: 10.3389/fnut.2023.1146021
  • Aderibigbe K, Komolafe OA, Adewole OS, et al. Anti hyperglycemic activities of Annona muricata (Linn). Afr J Trad Compl Alt Med. 2009;6(1). doi: 10.4314/ajtcam.v6i1.57075
  • Cheng D, Liang B, Li Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. Bio Med Res Int. 2013;2013:162724–24. doi: 10.1155/2013/162724
  • Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian J Biochem Biophys. 2010;47(6):383–387. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21355423
  • Muthukumar K, Rajakumar S, Sarkar MN, et al. Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek. 2011;99(4):761–771. doi: 10.1007/s10482-011-9550-9
  • Morsy MD, Hassan WN, Zalat SI. Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats. Diabetol Metab Syndr. 2010;2(1):29–29. doi: 10.1186/1758-5996-2-29
  • Darenskaya M, Kolesnikov S, Semenova N, et al. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int J Mol Sci. 2023;24(15):12378. doi: 10.3390/ijms241512378
  • Yoshida S-I, Hashimoto T, Kihara M, et al. Urinary oxidative stress markers closely reflect the efficacy of candesartan treatment for diabetic nephropathy. Nephron Exp Nephrol. 2008;111(1):e20–e30. doi: 10.1159/000178764
  • Lu Y, Xing C, Lv X, et al. Changes of ACE2 in different glucose metabolites and its relationship with COVID-19. Medicine (Baltimore). 2022;101(41):e31102–e02. doi: 10.1097/MD.0000000000031102
  • Kalidindi N, Thimmaiah NV, Jagadeesh NV, et al. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. Leaves J Food Drug Anal. 2015;23(4):795–802. doi: 10.1016/j.jfda.2015.04.012
  • de Freitas Laiber Pascoal G, de Almeida Sousa Cruz MA, de Abreu J P, et al. Evaluation of the antioxidant capacity, volatile composition and phenolic content of hybrid vitis vinifera L. varieties sweet sapphire and sweet surprise. Food Chem. 2022;366(130644):130644. doi: 10.1016/j.foodchem.2021.130644
  • Sawczuk R, Karpinska J, Filipowska D, et al. Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate. Food Chem. 2022;368(130745):130745. doi: 10.1016/j.foodchem.2021.130745
  • Varadharajan V, Janarthanan UK, Krishnamurthy V. Physicochemical, phytochemical screening and profiling of secondary metabolites of Annona squamosa leaf extract. World J Pharm Res. 2012;1(4):1143–1164.
  • Dubey S, Ojha K, Chandrakar J, et al. Assessment of total phenolic content and antioxidant potentiality of selected Indian folk medicinal plants by spectrophotometric method. Plant Sci Today. 2020;7(3):383–390. doi: 10.14719/pst.2020.7.3.765
  • Kdrr S, Sirasa MSF. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018;238(203–08):203–208. doi: 10.1016/j.foodchem.2016.08.102
  • Leite DOD, Camilo CJ, Nonato C, et al. Chemical Profile and evaluation of the antioxidant and anti-acetylcholinesterase activities of Annona squamosa L. (Annonaceae) extracts. Foods (Basel, Switzerland), 2021;10(10):2343. doi: 10.3390/foods10102343
  • Neelima S, Dwarakanadha Reddy P, Kothapalli Bannoth CS. Nephroprotective activity of Annona Squamosa leaves against paracetamol-induced nephrotoxicity in rats: in vitro and in vivo experiments. Future J Pharm Sci. 2020;6(1). doi: 10.1186/s43094-020-00149-4
  • Wen W, Ti Z, Ti Z. Antidiabetic, antihyperlipidemic, antioxidant, anti-inflammatory activities of ethanolic seed extract of Annona reticulata L. in streptozotocin induced diabetic rats. Front Endocrinol. 2019;10(438167). doi: 10.3389/fendo.2019.00716
  • Ahmadvand H, Mahdavifard S. Protective effect of thioctic acid on renal ischemia–reperfusion injury in rat. Int J Prev Med. 2019;10(1):176–76. doi: 10.4103/ijpvm.IJPVM_396_17
  • Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne). 2013;4:7–7. doi: 10.3389/fendo.2013.00007
  • Qiao Y-C, Chen Y-L, Pan Y-H, et al. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PloS one. PLoS One. 2017;12(4):e0176157–e57. doi: 10.1371/journal.pone.0176157
  • Mitrović M, Popović Đ, Naglić D, et al. Markers of inflammation and microvascular complications in type 1 diabetes. Open Med. 2014;9(6):748–753. doi: 10.2478/s11536-013-0335-6
  • Shi G-J, Li Y, Cao Q-H, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy. 2019;109(1085–99). doi: 10.1016/j.biopha.2018.10.130 1085–1099
  • Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2010;17(2):149–151. doi: 10.1016/j.phymed.2009.05.016
  • Zhu L, Gu P, Shen H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol. 2019;67(129):129–137. doi: 10.1016/j.intimp.2018.11.049
  • Awada N, Ayoub A, Jaber A, et al. Evaluation of the Anticancer, Anti-Inflammatory, and Antioxidant properties of various extracts of Annona Squamosa L. Pharm Sci. 2023;29(3):384–394. doi: 10.34172/ps.2023.5
  • Tabara M, Shiraishi K, Takii R, et al. Testicular localization of activating transcription factor 1 and its potential function during spermatogenesis. Biol Reprod. 2021;105(4):976–986. doi: 10.1093/biolre/ioab099
  • Khamis T, Abdelkhalek A, Abdellatif H, et al. BM-MSCs alleviate diabetic nephropathy in male rats by regulating ER stress, oxidative stress, inflammation, and apoptotic pathways. Front Pharmacol. 2023;14(1265230–30). doi: 10.3389/fphar.2023.1265230