93
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Monitoring of soil pollution with heavy metals using some microbiological parameters

&
Pages 584-601 | Received 26 Mar 2024, Accepted 14 Jun 2024, Published online: 24 Jun 2024

References

  • Chaudhery MH, Rüstem K, editors. Environmental pollution and environmental analysis). In: Modern environmental analysis techniques for pollutants. Vol. Chapter 1. Elsevier Inc.; 2020. p. 1–36. doi: 10.1016/C2018-0-01639-4
  • Dian C. Effects of heavy metals on soil microbial community. IOP Conf Ser: Earth Environ Sci. 2018;113. doi: 10.1088/1755-1315/113/1/012009 113
  • Golia EE. The impact of heavy metal contamination on soil quality and plant nutrition. Sustainable management of moderate contaminated agricultural and urban soils, using low-cost materials and promoting circular economy. Sustainable Chem Pharm. 2023;33:33. doi: 10.1016/j.scp.2023.101046
  • Lian C, Shenglu Z, Yaxing S, et al. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci Total Environ. 2018;615(15):141–149. doi: 10.1016/j.scitotenv.2017.09.230
  • Wendan X, Xuezhu Y, Qi Z. Evaluation of cadmium transfer from soil to leafy vegetables: influencing factors, transfer models, and indication of soil threshold contents. Ecotoxicol Environ Saf. 2018;164(30):355–362. doi: 10.1016/j.ecoenv.2018.08.041
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691
  • Igiri B, Okoduwa S, Idoko G, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:1–16. doi: 10.1155/2018/2568038
  • Tarekegan M, Salilih F, Ishetu A, et al. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020;6(1):1783174. doi: 10.1080/23311932.2020.1783174
  • Ayele A, Haile S, Digafe A, et al. Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. Sci World J. 2021;1–10. doi: 10.1155/2021/5588111
  • Zhang L, Kangning X, Panteng W. Effects of heavy metals on nitrogen in soils of different ecosystems in the Karst Desertification of South China. Forests. 2023;14(7):1497. doi: 10.3390/f14071497
  • Wan P, Xiong K, Zhang L. Heterogeneity of spatial-temporal distribution of nitrogen in the Karst Rocky desertification soils and its implications for ecosystem service support of the desertification control—a literature review. Sustainability. 2022;14(10):6327. doi: 10.3390/su14106327
  • Zhang L, Xiong K, Wang X. Study of soil nitrogen in karst rocky desertification areas: a literature review. Pol J Environ Stud. 2022;31(6):5533–5547. doi: 10.15244/pjoes/152450
  • Jach ME, Sajnaga E, Ziaja M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal contaminated soils. Biology (Basel). 2022;11(5):676. doi: 10.3390/biology11050676
  • Hamsa N, Yogesh GS, Usha K, et al. Nitrogen transformation in soil: effect of heavy metals. Int J Curr Microbiol App Sci. 2017;6(5):816–832. doi: 10.20546/ijcmas.2017.605.092
  • Kamrun N, Md MA, Azmerry K, et al. Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh. Appl Soil Ecol. 2020;156:103697. doi: 10.1016/j.apsoil.2020.103697
  • Rowell L. Soil science: “methods and application”. Vol. 605. Third Avenue (NY): John Welly & Sons, Inc.; 1994. p. 10158.
  • Allen ON. Experiments in soil bacteriology. Soil Sci. 1959;85(3):60. Burgess Publishing Co. Minneapolis 15 Minnesota.
  • Fashola MO, Ngole JVM, Babalola OO. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health. 2016;13(11):1047. doi: 10.3390/ijerph13111047
  • Yuan-Seng W, Ahmed IO, Mohamed H, et al. The toxicity of mercury and its chemical compounds: molecular mechanisms and environmental and human health implications: a comprehensive review. ACS Omega. 2024;9(5):5100–5126. doi: 10.1021/acsomega.3c07047
  • Muhammad S, Naila A, Saraj B, et al. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microbial Pathogenesis. 2021;150:104713. doi: 10.1016/j.micpath.2020.104713
  • Abel-Inobeme. Effect of heavy metals on activities of soil microorganism. In: Charles OA, Deepak GP and Yogeshvari KJ, editors. Microbial rejuvenation of polluted environment. Vol. 3. Springer link; 2021. p. 115–142. doi: 10.1007/978-981-15-7459-7_6
  • Liu A, Fang D, Wang C. Primary research on the recovery of soil nitrification and its key factors under the Cu stress. Ecol Environ Sci. 2014;23:1986–1990.
  • Afzal M, Yu M, Tang C, et al. The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environ Int. 2019;129:451–460. doi: 10.1016/j.envint.2019.05.058
  • Anna LB, Piotr B. The effect of industrial heavy metal pollution on microbial abundance and diversity in soils —a review. IntechOpen; 2019. Chapter 26.
  • Chen C, Tan K, Min W, et al. Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils. Sci Total Environ. 2022;830(15):154732. doi: 10.1016/j.scitotenv.2022.154732
  • Qiang L, Mingzhu L, Yuanpeng D, et al. Impacts of Cu and sulfadiazine on soil potential nitrification and diversity of ammonia-oxidizing archaea and bacteria. Environ Pollut Bioavailability. 2019;31(1):60–69. doi: 10.1080/26395940.2018.1564629
  • Kapoor V, Li X, Elk M. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environ Sci Technol. 2015;49(22):13454. doi: 10.1021/acs.est.5b02748