446
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Implementation of a wheel–rail temperature model for locomotive traction studies

, , , , &
Pages 1-15 | Received 04 Apr 2016, Accepted 12 May 2016, Published online: 31 May 2016

References

  • Gupta V, Hahn GT, Bastias PC, et al. Calculations of the frictional heating of a locomotive wheel attending rolling plus sliding. Wear. 1996;191(1–2):237–241. doi:10.1016/0043-1648(95)06691-8.
  • Ertz M, Knothe K. A comparison of analytical and numerical methods for the calculation of temperatures in wheel/rail contact. Wear. 2002;253(3–4):498–508. doi:10.1016/S0043-1648(02)00120-5.
  • Fischer FD, Daves W, Werner EA. On the temperature in the wheel-rail rolling contact. Fatigue Fract Eng Mater Struct. 2003;26(10):999–1006. doi:10.1046/j.1460-2695.2003.00700.x.
  • Lewis R, Olofsson U. Wheel–rail interface handbook. Oxford, UK: CRC Press; 2009.
  • Mandal N. On the low cycle fatigue failure of insulated rail joints (IRJs). Eng Fail Anal. 2014;40:58–74. doi:10.1016/j.engfailanal.2014.02.006.
  • Cole C, Spiryagin M, Sun Y, et al. R3.119 – Locomotive Adhesion, Final Report. Brisbane, Australia: CRC for Rail Innovation, 2013.
  • Vo K, Tieu A, Zhu H, et al. A tool to estimate the wheel/rail contact and temperature rising under dry, wet and oily conditions. In: Brebbia CA, Tomii N, Tzieropoulos P, Mera JM, Editors. Computers in Railways XIV: Railway engineering design and optimization. Southampton, UK: WIT Press; 2014. p. 191–201.
  • Vo K, Tieu A, Zhu H, et al. Comparisons of stress, heat and wear generated by AC versus DC locomotives under diverse operational conditions. Wear. 2015;328–329:186–196. doi:10.1016/j.wear.2015.02.024.
  • Spiryagin M, Lee K, Yoo H, et al. Modeling of adhesion for railway vehicles. J Adhes Sci Technol. 2008;22:1017–1034. doi:10.1163/156856108X335757.
  • Gallardo-Hernandez E, Lewis R. Twin disc assessment of wheel/rail adhesion. Wear. 2008;265:1309–1316. doi:10.1016/j.wear.2008.03.020.
  • Blau P. Embedding wear models into friction models. Tribol Lett. 2009;34:75–79. doi:10.1007/s11249-008-9395-1.
  • Meli E, Ridolfi A. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions. Multibody Syst Dyn. 2015;33(3):285–313. doi:10.1007/s11044-013-9405-4.
  • Spiryagin M, Polach O, Cole C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm. Vehicle Syst Dyn. 2013;51(11):1765–1783. doi:10.1080/00423114.2013.826370.
  • Kalker J. A fast algorithm for the simplified theory of rolling contact. Vehicle Syst Dyn. 1982;11:1–13. doi:10.1080/00423118208968684.
  • Polach O. Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992–1000. doi:10.1016/j.wear.2004.03.046.
  • Holman J. Heat transfer. 10th ed. New York, NY: McGraw-Hill; 2010.
  • Vernersson T. Temperatures at railway tread braking. Part 1: Modelling. J Rail Rapid Transit. 2007;221:167–182. doi:10.1243/0954409JRRT57.
  • Vernersson T. Temperatures at railway tread braking. Part 2: Calibration and numerical examples. J Rail Rapid Transit. 2007;221:429–442. doi:10.1243/09544097JRRT90.
  • Vernersson T, Lundén R. Temperatures at railway tread braking. Part 3: wheel and block temperatures and the influence of rail chill. J Rail Rapid Transit. 2007;221:443–454. doi:10.1243/09544097JRRT91.
  • Kragelsky I, Dobychin M, Kombalov V. Friction & wear: calculation methods. Great Britain: Pergamon Press; 1977.
  • Spiryagin M, Lee K, Yoo H, et al. Numerical calculation of temperature in the wheel–rail flange contact and implications for lubricant choice. Wear. 2010;268(1–2):287–293. doi:10.1016/j.wear.2009.08.014.
  • Carslaw H, Jaeger J. Conduction of heat in solids. Oxford, UK: Oxford University Press; 1986. p. 520.
  • Spiryagin M, Sun Y, Cole C, et al. Development of a real-time bogie test rig model based on railway specialised multibody software. Vehicle Syst Dyn. 2013;51(2):236–250. doi:10.1080/00423114.2012.724176.
  • Spiryagin M, Wolfs P, Szanto F, et al. Simplified and advanced modelling of traction control systems of heavy-haul locomotives. Vehicle Syst Dyn. 2015;53(5):672–691. doi:10.1080/00423114.2015.1008016.
  • Spiryagin M, Cole C, Sun YQ. Adhesion estimation and its implementation for traction control of locomotives. Int J Rail Transp. 2014;2(3):187–204. doi:10.1080/23248378.2014.924842.
  • Lyapushkin N Theoretical basis of interaction locomotive wheels derailed at the nanoscale [ PhD Thesis]. Moscow, Russia: Moscow State University of Railway Engineering (MIIT); 2008.
  • Federal Railroad Administration. Track safety standards – Classes 1 through 5, Chapter 1 in: Track and rail and infrastructure integrity compliance manual. Washington, DC: Federal Railroad Administration; 2014. January.
  • Vakkalagadda M, Vineesh K, Racherla V. Estimation of railway wheel running temperatures using a hybrid approach. Wear. 2015;328–329:537–551. doi:10.1016/j.wear.2015.03.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.