980
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental validation of a non-linear train-track-bridge dynamic model of a stone arch railway bridge under freight traffic

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 102-133 | Received 09 Feb 2022, Accepted 30 Sep 2022, Published online: 11 Oct 2022

References

  • SB. Masonry arch bridges background document D4.7. sustainable bridges. EU FP6; 2007.
  • Ozaeta García-Catalán R. Martín-Caro lamo. ja: catalogue of damages for masonry arch bridges-final draft. International Union of Railways. In: Improving assessment, optimization of maintenance and development of database for masonry arch bridges (UIC project I/03/U/285). Paris: UIC; 2006: 128.
  • Ribeiro D, Calçada R, Brehm M, et al. Calibration of the numerical model of a track section over a railway bridge based on dynamic tests. Vol. 34. Structures; 2021. pp. 4124–4141.
  • Ticona Melo LR, Malveiro J, Ribeiro D, et al. Dynamic analysis of the train-bridge system considering the non-linear behaviour of the track-deck interface. Eng Struct. 2020;220:110980.
  • Zhai W, Wang S, Zhang N, et al. High-speed train–track–bridge dynamic interactions – Part II: experimental validation and engineering application. Int J Rail Trans. 2013;1(1–2):25–41. DOI:10.1080/23248378.2013.791497
  • Zhai W, Xia H, Cai C, et al. High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation. Int J Rail Trans. 2013;1(1–2):3–24. DOI:10.1080/23248378.2013.791498
  • Zhai W, Han Z, Chen Z, et al. Train–track–bridge dynamic interaction: a state-of-the-art review. Veh Syst Dyn. 2019;57(7):984–1027. DOI:10.1080/00423114.2019.1605085
  • Xu L, Zhai W, Li Z. A coupled model for train-track-bridge stochastic analysis with consideration of spatial variation and temporal evolution. Appl Math Modell. 2018;63:709–731.
  • Zhu Z, Gong W, Wang L, et al. Efficient assessment of 3D train-track-bridge interaction combining multi-time-step method and moving track technique. Eng Struct. 2019;183:290–302.
  • Montenegro PA, Neves SGM, Calçada R, et al. Wheel–rail contact formulation for analyzing the lateral train–structure dynamic interaction. Vol. 152. Computers & Structures; 2015. pp. 200–214.
  • Zhang N, Tian Y, Xia H. A train-bridge dynamic interaction analysis method and its experimental validation. Eng. 2016;2(4):528–536.
  • De Antonio M, Carvalho H, Montenegro A, et al. Influence of the double composite action solution in the behavior of a high-speed railway viaduct. J Bridge Eng. 2020;25(7):05020002. DOI:10.1061/(ASCE)BE.1943-5592.0001563
  • Zangeneh A, Svedholm C, Andersson A, et al. Identification of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing. Eng Struct. 2018;159:299–309.
  • Costa C, Ribeiro D, Jorge P, et al. Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Eng Struct. 2016;123:354–371.
  • Ribeiro D, Calçada R, Delgado R, et al. Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters. Eng Struct. 2012;40:413–435.
  • Axelsson E, Syk A, Ülker-Kaustell M, et al. Effect of axle load spreading and support stiffness on the dynamic response of short span railway bridges. Structural Engineering International. 2014;24(4):457–465. DOI:10.2749/101686614X13854694314360
  • Rigueiro C, Rebelo C, Simões da Silva L. Influence of ballast models in the dynamic response of railway viaducts. J Sound Vibr. 2010;329(15):3030–3040.
  • Rebelo C, Simões da Silva L, Rigueiro C, et al. Dynamic behaviour of twin single-span ballasted railway viaducts — Field measurements and modal identification. Eng Struct. 2008;30(9):2460–2469. DOI:10.1016/j.engstruct.2008.01.023
  • Ticona Melo LR, Ribeiro D, Calçada R, et al. Validation of a vertical train–track–bridge dynamic interaction model based on limited experimental data. Struct Infrastruct Eng. 2020;16(1):181–201. DOI:10.1080/15732479.2019.1605394
  • Stollwitzer A, Fink J, Malik T. Experimental analysis of damping mechanisms in ballasted track on single-track railway bridges. Eng Struct. 2020;220:110982.
  • Bruni S, Vinolas J, Berg M, et al. Modelling of suspension components in a rail vehicle dynamics context. Veh Syst Dyn. 2011;49(7):1021–1072. DOI:10.1080/00423114.2011.586430
  • Weidemann C. State-of-the-art railway vehicle design with multi-body simulation. J Mech Syst Transp Logist. 2010;3(1):12–26.
  • Bragança C, Neto J, Pinto N, et al. Calibration and validation of a freight wagon dynamic model in operating conditions based on limited experimental data. Veh Syst Dyn. 2021;1–27.
  • Ribeiro D, Calçada R, Delgado R, et al. Finite-element model calibration of a railway vehicle based on experimental modal parameters. Veh Syst Dyn. 2013;51(6):821–856. DOI:10.1080/00423114.2013.778416
  • Akiyama Y, Tomioka T, Takigami T, et al. A three-dimensional analytical model and parameter determination method of the elastic vibration of a railway vehicle carbody. Veh Syst Dyn. 2020;58(4):545–568. DOI:10.1080/00423114.2019.1590606
  • Liu X, Zhang Y, Xie S, et al. Fatigue failure analysis of express freight sliding side covered wagon based on the rigid-flexibility model. International Journal of Structural Integrity. 2021;12(1):98–108. DOI:10.1108/IJSI-11-2019-0122
  • Xue R, Ren Z, Fan T, et al. Vertical vibration analysis of a coupled vehicle-container model of a high-speed freight EMU. Veh Syst Dyn. vol. 60, 2020;1–25.
  • Sarhosis V, De Santis S, de Felice G. A review of experimental investigations and assessment methods for masonry arch bridges. Struct Infrastruct Eng. 2016;12(11):1439–1464.
  • Harvey B, Obvis home page. 2020: http://www.obvis.com.
  • Gilbert M, RING home page. 2020: http://www.shef.ac.uk/ring.
  • Lemos JV. Discrete element modeling of masonry structures. Int J Archit Herit. 2007;1(2):190–213.
  • Fanning PJ, Boothby TE. Three-dimensional modelling and full-scale testing of stone arch bridges. Computers & Structures. 2001;79(29):2645–2662.
  • Cavicchi A, Gambarotta L. Collapse analysis of masonry bridges taking into account arch–fill interaction. Eng Struct. 2005;27(4):605–615.
  • Milani G, Lourenço PB. 3D non-linear behavior of masonry arch bridges. Vol. 110. Computers & Structures; 2012. pp. 133–150. UK.
  • Gatta C, Addessi D, Vestroni F. Static and dynamic nonlinear response of masonry walls. Int J Solids Struct. 2018;155:291–303.
  • Addessi D. A 2D Cosserat finite element based on a damage-plastic model for brittle materials. Vol. 135. Computers & Structures; 2014. pp. 20–31. UK.
  • Addessi D, Gatta C, Nocera M, et al. Nonlinear dynamic analysis of a masonry arch bridge accounting for damage evolution. Geosciences. 2021;11(8):343. DOI:10.3390/geosciences11080343
  • Gibbons N, Fanning PJ, Progressive cracking of masonry arch bridges. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 2016. 169( 2): 93–112.
  • Franck S, Bretschneider N, Slowik V. Safety analysis of existing masonry arch bridges by nonlinear finite element simulations. Int J Damage Mech. 2019;29:105678951986599.
  • Domede N, Sellier A, Stablon T. Structural analysis of a multi-span railway masonry bridge combining in situ observations, laboratory tests and damage modelling. Eng Struct. 2013;56:837–849.
  • Ataei S, Miri A, Tajalli M. Dynamic load testing of a railway masonry arch bridge: a case study of Babak bridge. Sci Iran. 2017;24(4):1834–1842.
  • Bayraktar A, Altunişik AC, Birinci F, et al. Finite-element analysis and vibration testing of a two-span masonry arch bridge. J Perform Constr Facil. 2009;24(1):46–52.
  • Pepi C, Cavalagli N, Gusella V, et al. An integrated approach for the numerical modeling of severely damaged historic structures: application to a masonry bridge. Adv Eng Software. 2021;151:102935.
  • Castellazzi G, De Miranda S, Mazzotti C. Finite element modelling tuned on experimental testing for the structural health assessment of an ancient masonry arch bridge. Math Prob Eng. 2012;495019.
  • Cocking S, Acikgoz S, DeJong M. Interpretation of the dynamic response of a masonry arch rail viaduct using finite-element modeling. Journal of Architectural Engineering. 2020;26(1):05019008.
  • Yazdani M, Azimi P. Assessment of railway plain concrete arch bridges subjected to high-speed trains. Structures. 2020;27:174–193.
  • Ataei S, Jahangiri Alikamar M, Kazemiashtiani V. Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing. Constr Build Mater. 2016;116:413–421.
  • Silva R, Ribeiro D, Bragança C, et al. Model updating of a freight wagon based on dynamic tests under different loading scenarios. Appl Sci. 2021;11(22):10691. DOI:10.3390/app112210691
  • Arêde A, Costa C, Gomes AT, et al. Experimental characterization of the mechanical behaviour of components and materials of stone masonry railway bridges. Constr Build Mater. 2017;153:663–681.
  • ARTeMISARTeMIS extractor pro - academic licence. Aalborg, Denmark: Structural Vibration Solutions ApS; 2009. edUsManual.
  • ANSYSAcademic research, release 18.1, help system, ansys fluent theory guide. ed. Canonsburg, Pennsylvania, USA: ANSYS, Inc; 2017.
  • Silva R, Costa C, Arêde A. Numerical methodologies for the analysis of stone arch bridges with damage under railway loading. Structures. 2022;39:573–592.
  • Wriggers P. Introduction to contact mechanics, in computational contact mechanics. Wriggers P, editor. Berlin Heidelberg: Berlin, Heidelberg: Springer; 2006. pp. 11–29.
  • Alfano G, Crisfield MA. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Method Biomed Eng. 2001;50(7):1701–1736.
  • Costa C, Silva R, Arêde A, Mechanical characteristics of stone masonry bridges: experimental evaluation and numerical simulations, in 3rd International Conference on Protection of Historical Constructions. 2017: Lisbon.
  • D214 ESC. Rail bridges for speeds >200km/h. Publications RT, editor. European Rail Research Institute: 1999. The Netherlands.
  • Hertz H. Ueber die berührung fester elastischer körper (on contact between elastic bodies). Journal Für Die Reine Und Angewandte Mathematik. 1882;92.
  • Bathe K-J-R. Finite element procedures. Englewood Cliffs: Prentice-Hall; 1996.
  • Vanegas-Useche LV, Wahab MA, Parker GA. Determination of the normal contact stiffness and integration time step for the finite element modeling of bristle-surface interaction. Cmc-Computers Materials & Continua. 2018;56:169–184.
  • Alves Ribeiro C, Calçada R, Delgado R. Calibration and experimental validation of a dynamic model of the train-track system at a culvert transition zone. Struct Infrastruct Eng. 2018;14(5):604–618.
  • CEN, EN1991-2: actions on structures-Part 2: traffic loads on bridges. (2003).