92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integration of brake block thermal equations within a railway vehicle multibody model: a multiphysics approach

ORCID Icon, ORCID Icon & ORCID Icon
Received 22 May 2023, Accepted 29 Dec 2023, Published online: 18 Jan 2024

References

  • Vernersson T. Thermally induced roughness of tread-braked railway wheels: part 1: brake rig experiments. Wear. 1999;236(1):96–105. doi: 10.1016/S0043-1648(99)00260-4
  • Thompson D, Squicciarini G, Ntotsios E, et al.et al. Noise and vibration from railway vehicles. In: Iwnicki S, Spiryagin M Cole C, editors. Handbook of railway vehicle dynamics Second ed. Boca Raton (FL, USA):CRC Press; 2019. pp. 521–578.
  • Paukert H UIC works to reduce train noise with composite brake shoes. Global Railway Review. 2007 [cited 2023 May 22]. https://www.globalrailwayreview.com/article/1164/uic-activities-on-composite-brake-shoes/
  • Zampieri N, Bosso N, Gugliotta A Innovative Monitoring Systems for Onboard Vehicle Diagnostics. In: Pombo J, editor. Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance; Cagliari (Italy). Stirlingshire (UK): Civil-Comp Press; 2016.
  • Bosso N, Gugliotta A, Magelli M, et al. Monitoring of railway freight vehicles using onboard systems. Procedia Struct Integr. 2019;24:692–705. doi: 10.1016/j.prostr.2020.02.061
  • Tudor A, Radulescu C, Petre I. Thermal effect of the brake shoes friction on the wheel/rail contact. Tribol Ind. 2003;25(1–2):27–32.
  • Tudor A, Khonsari MM. Analysis of heat partitioning in wheel/rail and wheel/brake shoe friction contact: an analytical approach. Tribol Trans. 2006;49(4):635–642. doi: 10.1080/10402000600927886
  • Yevtushenko A, Topczewska K, Kuciej M. Analytical determination of the brake temperature mode during repetitive short-term braking. Materials. 2021;14(8):1912. doi: 10.3390/ma14081912
  • Ghafelehbashi S, Talaee M. An analytical thermal model of a railway vehicle brake shoe. Proc Inst Mech Eng F J Rail Rapid Transit. 2022;236(4):375–385. doi: 10.1177/09544097211022107
  • Békési N, Váradi K. Contact thermal analysis and wear simulation of a brake block. Adv Tribol. 2013;2013:1–7. doi: 10.1155/2013/878274
  • Ivanov P, Khudonogov A, Dulskiy E, et al. Study of the influence of the brake shoe temperature and wheel tread on braking effectiveness. J Phys Conf Ser. 2020;1614(1):012086. doi: 10.1088/1742-6596/1614/1/012086
  • Somà A, Aimar M, Zampieri N. Simulation of the thermal behavior of cast iron brake block during braking maneuvers. Appl Sci. 2021;11(11):5010. doi: 10.3390/app11115010
  • Vakkalagadda MRK, Vineesh KP, Racherla V. Estimation of railway wheel running temperatures using a hybrid approach. Wear. 2015;328-329:537–551. doi: 10.1016/j.wear.2015.03.026
  • Bosso N, Magelli M, Zampieri N, editors Development of a numerical tool for the computation of rail wheel – brake shoe thermo-mechanical interaction based on a 2D plane finite element model. Proceedings of The Fifth International Conference on Railway Technology: Research, Development and Maintenance; 22-25 August 2022; Montepllier (France). Edinburgh (UK): Civil-Comp Press.
  • Bosso N, Cantone L, Falcitelli G, et al. Simulation of the thermo-mechanical behaviour of tread braked railway wheels by means of a 2D finite element model. Tribol Int. 2023;178:178. doi: 10.1016/j.triboint.2022.108074
  • Vernersson T. Temperatures at railway tread braking. Part 1: modelling. Proc Inst Mech Eng F J Rail Rapid Transit. 2007;221(2):167–182. doi: 10.1243/0954409JRRT57
  • Suresh Babu A, Siva Prasad N. Coupled field finite element analysis of railway block brakes. Proc Inst Mech Eng F J Rail Rapid Transit. 2009;223(4):345–352. doi: 10.1243/09544097JRRT256
  • Milošević M, Stamenković D, Tomić M, et al. Modeling thermal effects in braking systems of railway vehicles. Therm Sci. 2012;16(2):515–526. doi: 10.2298/TSCI120503188M
  • Yevtushenko A, Kuciej M, Grzes P, et al. Methodology of estimation of temperature mode in the 2xBgu type railway braking system. Sci Rep. 2022;12(1). doi: 10.1038/s41598-022-25283-2
  • Yuan Z, Tian C, Wu M, et al. A modified uniformly distributed heat source method for predicting braking temperature of railway brake disc. Int J Rail Transp. 2022;10(2):216–229. doi: 10.1080/23248378.2021.1882890
  • Ehret M, Hohmann E, Heckmann A. On the modelling of the friction characteristics of railway vehicle brakes. Int J Rail Transp. 2023;11(1):50–68. doi: 10.1080/23248378.2022.2029723
  • Ivanov P, Dulskiy E, Kruglov S, et al. Analysis of the factors influencing the friction coefficient of the train brake pad. In: Kovalev I Voroshilova A, editors Proceedings of the IV International Scientific Conference on Advanced Technologies in Aerospace, Mechanical and Automation Engineering; 10-11 December 2021; Krasnoyarsk (Russian Federation): AIP Publishing; 2021.
  • Wu Q, Sun Y, Spiryagin M, et al. Parallel Co-simulation method for railway vehicle-track dynamics. J Comput Nonlinear Dyn. 2018;13(4). doi: 10.1115/1.4039310
  • Spiryagin M, Persson I, Wu Q, et al. A co-simulation approach for heavy haul long distance locomotive-track simulation studies. Veh Syst Dyn. 2019;57(9):1363–1380. doi: 10.1080/00423114.2018.1504088
  • Bosso N, Zampieri N. Numerical stability of co-simulation approaches to evaluate wheel profile evolution due to wear. Int J Rail Transp. 2020;8(2):159–179. doi: 10.1080/23248378.2019.1672588
  • Sass L, McPhee J, Schmitke C, et al. A comparison of different methods for modelling electromechanical multibody systems. Multibody Syst Dyn. 2004;12(3):209–250. doi: 10.1023/B:MUBO.0000049196.78726.da
  • Brusa EGM, Bosso N, Zampieri N, et al. Electromechanical coupled response of the AC electric arc furnace structures during the scrap melting Process Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis; 2-4 July 2012; Nantes: ASME; 2012. p. 459–468.
  • Yamashita H, Arora R, Kanazawa H, et al. Reduced-order thermomechanical modeling of multibody systems using floating frame of reference formulation. Proc Inst Mech Eng K: J Multi-Body Dyn. 2019;233(3):617–630. doi: 10.1177/1464419318810886
  • Liu J, Pan K. Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp Sci Technol. 2016;52:102–114. doi: 10.1016/j.ast.2016.02.025
  • Čepon G, Starc B, Zupančič B, et al. Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation. Multibody Syst Dyn. 2017;41(4):391–402. doi: 10.1007/s11044-017-9574-7
  • Cui Y-Q, Yu Z-Q, Lan P. A novel method of thermo-mechanical coupled analysis based on the unified description. Mech Mach Theory. 2019;134:376–392. doi: 10.1016/j.mechmachtheory.2019.01.001
  • Shabana AA. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn. 1997;1(3):339–348. doi: 10.1023/A:1009740800463
  • Sukumaran S, Kalani D, Suryavanshi Y, et al. Performance evaluation of two wheeler brake system using coupled thermo-mechanical simulation. SAE Technical Paper; 2018.
  • Bashir M, Qayoum A, Saleem S. Analysis of frictional heating and thermal expansion in a disc brake using COMSOL. J Phys Conf Ser. 2019;1240(1):012094. doi: 10.1088/1742-6596/1240/1/012094
  • Wu Q, Spiryagin M, Cole C. Block–Wheel–Rail Temperature Assessments Via Longitudinal Train Dynamics Simulations. J Comput Nonlinear Dyn. 2022;17(11). doi: 10.1115/1.4055431
  • Wu Q, Magelli M, Zampieri N, et al. Adding a brake shoe temperature model into freight train longitudinal braking dynamics simulations. Proc Inst Mech Eng F J Rail Rapid Transit. 2023;237(5):631–641. doi: 10.1177/09544097221126274
  • Wu Q, Spiryagin M, Cole C. Longitudinal train dynamics: an overview. Veh Syst Dyn. 2016;54(12):1688–1714. doi: 10.1080/00423114.2016.1228988
  • Bosso N, Magelli M, Zampieri N Long train dynamic simulation by means of a new in-house code. In: Passerini G, Mera J Takagi R, editors WIT Transactions on the Built Environment; 1-3 July 2020; Online Conference. Southampton (UK): WIT Press; 2020. p. 249–259.
  • Bosso N, Magelli M, Zampieri N. Development and validation of a new code for longitudinal train dynamics simulation. Proc Inst Mech Eng F J Rail Rapid Transit. 2021;235(3):286–299. doi: 10.1177/0954409720923497
  • Brenan KE, Campbell SL, Petzold LR. Numerical solution of initial value problem sin differential-algebraic equations. New York (NY, USA): North-Holland; 1989.
  • Haug EJ, Yen J. Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics. In: Haug E Deyo R, editors Real-time integration methods for mechanical system simulation. Berlin, Heidelberg: Springer; 1991. pp. 97–114.
  • Bosso N, Magelli M, Zampieri N. Dynamical effects of the increase of the axle load on European Freight railway vehicles. Appl Sci. 2023;13(3):1318. doi: 10.3390/app13031318
  • Wu Q, Cole C, Spiryagin M, et al. Freight train air brake models. Int J Rail Transp. 2021;11(1):1–49. doi: 10.1080/23248378.2021.2006808
  • Ge X, Chen Q, Ling L, et al. An approach for simulating the air brake system of long freight trains based on fluid dynamics. Railw Eng Sci. 2023;31:122–134. doi: 10.1007/s40534-022-00291-0
  • Cantone L, Ottati A. A simplified pneumatic model for air brake of passenger trains. Railw Eng Sci. 2023;31(2):141–152. doi: 10.1007/s40534-022-00300-2
  • UIC. Brakes - Braking Performance. Standard No.: 544–1.
  • Cantone L, Muller L, Negretti D, et al.et al. TrainDy, a new UIC simulator for the longitudinal dynamics of trains. In: Allan J, Arias E Brebbia C, editors. WIT transactions on the built environment. 15-17 September 2008. Toledo (Spain). Southampton (UK): WIT Press. 2008pp. 735–744.
  • Bosso N, Magelli M, Rossi Bartoli L, et al. The influence of resistant force equations and coupling system on long train dynamics simulations. Proc Inst Mech Eng F J Rail Rapid Transit. 2022;236(1):35–47. doi: 10.1177/09544097211001149
  • Spiryagin M, Wu Q, Cole C. International benchmarking of longitudinal train dynamics simulators: benchmarking questions. Veh Syst Dyn. 2017;55(4):450–463. doi: 10.1080/00423114.2016.1270457
  • Wu Q, Spiryagin M, Cole C, et al. International benchmarking of longitudinal train dynamics simulators: results. Veh Syst Dyn. 2018;56(3):343–365. doi: 10.1080/00423114.2017.1377840
  • EN. Railway applications - wheelsets and bogies - monobloc wheels - technical approval procedure - part 1: forged and rolled wheels. Standard No.: EN 13979-1: 2020.
  • Bosso N, Magelli M, Zampieri N. A numerical method for the simulation of freight train emergency braking operations based on the UIC braked weight percentage. Railw Eng Sci. 2023;31(2):162–171. doi: 10.1007/s40534-022-00296-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.