343
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization of electro-pneumatic braking process with fuzzy logic control for heavy haul railway applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 27 Nov 2023, Accepted 30 Mar 2024, Published online: 10 Apr 2024

References

  • Wei W, Hu Y, Wu Q, et al. An air brake model for longitudinal train dynamics studies. Veh Syst Dyn. 2017;55(4):517–533. doi: 10.1080/00423114.2016.1254261
  • Eckert JJ, Teodoro ÍP, Teixeira LH, et al. A fast simulation approach to assess draft gear loads for heavy haul trains during braking. Mechanics Based Design of Structures and Machines. 2023;51(3):1606–1625. doi: 10.1080/15397734.2021.1875233
  • Oprea RA, Cruceanu C, Spiroiu MA. Alternative friction models for braking train dynamics. Veh Syst Dyn. 2013;51(3):460–480. doi: 10.1080/00423114.2012.744459
  • Lin X, Wang Q, Wang P, et al. The energy-efficient operation problem of a freight train considering long-distance steep downhill sections. Energies. 2017;10(6):794. doi: 10.3390/en10060794
  • Howlett P. A new look at the rate of change of energy consumption with respect to journey time on an optimal train journey. Transp Res E Method. 2016;94:387–408. doi: 10.1016/j.trb.2016.10.004
  • Bai B, Xiao Z, Wang Q, et al. Multi-objective trajectory optimization for freight trains based on quadratic programming. Transp Res Rec. 2020;2674(11):466–477. doi: 10.1177/0361198120937307
  • Wang X, Li S, Tang T, et al. Intelligent operation of heavy haul train with data imbalance: A machine learning method. Knowledge-Based Syst. 2019;163:36–50. doi: 10.1016/j.knosys.2018.08.015
  • Zhang L, Zhuan X. Optimal operation of heavy-haul trains equipped with electronically controlled pneumatic brake systems using model predictive control methodology. IEEE Trans Control Syst Technol. 2013;22(1):13–22. doi: 10.1109/TCST.2013.2238235
  • Yi L, Zhang D, Li W, et al. Research on multi-objective optimization of freight train operation process based on improved bald eagle search algorithm. J Comp. 2022;33(5):135–150. doi: 10.53106/199115992022103305012
  • Wu Q, Cole C, Spiryagin M, et al. Freight train air brake models. Int J Rail Trans. 2023;11(1):1–49. doi: 10.1080/23248378.2021.2006808
  • Bosso N, Magelli M, Zampieri N. A numerical method for the simulation of freight train emergency braking operations based on the uic braked weight percentage. Rail Eng Science. 2023;31(2):162–171. doi: 10.1007/s40534-022-00296-9
  • Pfaff R. Braking distance prediction for vehicle consist in low-speed on-sight operation: a monte carlo approach. Rail Eng Science. 2023;31(2):135–144. doi: 10.1007/s40534-023-00303-7
  • Ge X, Chen Q, Ling L, et al. An approach for simulating the air brake system of long freight trains based on fluid dynamics. Rail Eng Science. 2023;31(2):122–134. doi: 10.1007/s40534-022-00291-0
  • Wei W, Zhang Y, Zhang J, et al. Influence of quick release valve on braking performance and coupler force of heavy haul train. Rail Eng Science. 2023;31(2):153–161. doi: 10.1007/s40534-022-00301-1
  • Wu Q, Cole C, Spiryagin M, et al. Railway air brake model and parallel computing scheme. J Comput Nonlin Dyn. 2017;12(5):051017. doi: 10.1115/1.4036421
  • Pugi L, Rindi A, Ercole AG, et al. Preliminary studies concerning the application of different braking arrangements on Italian freight trains. Veh Syst Dyn. 2011;49(8):1339–1365. doi: 10.1080/00423114.2010.505291
  • Belforte P, Cheli F, Diana G, et al. Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains. Veh Syst Dyn. 2008;46(S1):937–955. doi: 10.1080/00423110802037180
  • Cantone L. Traindy: the new union internationale des chemins de fer software for freight train interoperability. Proc Inst Mech Eng F J Rail Rapid Transit. 2011;225(1):57–70. doi: 10.1243/09544097JRRT347
  • Cantone L, Ottati A. A simplified pneumatic model for air brake of passenger trains. Rail Eng Science. 2023;31(2):145–152. doi: 10.1007/s40534-022-00300-2
  • Di Gialleonardo E, Cazzulani G, Melzi S, et al. The effect of train composition on the running safety of low-flatcar wagons in braking and curving manoeuvres. Proc Inst Mech Eng F J Rail Rapid Transit. 2017;231(6):666–677. doi: 10.1177/0954409716636923
  • Teodoro ÍP, Eckert JJ, Lopes PF, et al. Parallel simulation of railway pneumatic brake using openmp. Int J Rail Trans. 2020;8(2):180–194. doi: 10.1080/23248378.2019.1660239
  • Wu Q, Cole C, Spiryagin M, et al. Parallel multiobjective optimisations of draft gear designs. Proc Inst Mech Eng F J Rail Rapid Transit. 2018;232(3):744–758. doi: 10.1177/0954409717690981
  • Wagner S, Cole C, Spiryagin M. A review on design and testing methodologies of modern freight train draft gear system. Rail Eng Science. 2021;29(2):127–151. doi: 10.1007/s40534-021-00237-y
  • Yadav OP, Vyas NS. The influence of aar coupler features on estimation of in-train forces. Rail Eng Science. 2023;31(3):233–251. doi: 10.1007/s40534-022-00297-8
  • Wu Q, Cole C, Luo S, et al. A review of dynamics modelling of friction draft gear. Veh Syst Dyn. 2014;52(6):733–758. doi: 10.1080/00423114.2014.894199
  • da Silva, SF, Eckert JJ, Silva FL, et al. Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain. Energy Convers Manag. 2023;292:117330. doi: 10.1016/j.enconman.2023.117330
  • da Silva, SF, Eckert JJ, Corrêa FC, et al. Dual hess electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle. Appl Energy. 2022;324:119723. doi: 10.1016/j.apenergy.2022.119723
  • Silva FL, Silva LCA, Eckert JJ, et al. Robust fuzzy stability control optimization by multi-objective for modular vehicle. Mech Mach Theory. 2022;167:104554. doi: 10.1016/j.mechmachtheory.2021.104554
  • Cole C. Longitudinal train dynamics. Handbook of Railway Vehicle Dynamics. 2006;1:239–278.
  • Eckert JJ, Ramos PG, de Oliveira Junior AJS, et al. A dissipated energy model of shock evolution in the simulation of the dynamics of dgm’s of railway compositions. Mech Mach Theory. 2019;134:365–375. doi: 10.1016/j.mechmachtheory.2018.12.034
  • Wu Q, Luo S, Qu T, et al. Comparisons of draft gear damping mechanisms. Veh Syst Dyn. 2017;55(4):501–516. doi: 10.1080/00423114.2016.1252049
  • Pugi L, Malvezzi M, Papini S, et al. Design and preliminary validation of a tool for the simulation of train braking performance. J Mod Transp. 2013;21(4):247–257. doi: 10.1007/s40534-013-0027-6
  • Teodoro ÍP, Ribeiro DF, Botari T, et al. Fast simulation of railway pneumatic brake systems. Proc Inst Mech Eng F J Rail Rapid Transit. 2019;233(4):420–430. doi: 10.1177/0954409718796903
  • Eckert JJ, da Silva SF, Santiciolli FM, et al. Multi-speed gearbox design and shifting control optimization to minimize fuel consumption, exhaust emissions and drivetrain mechanical losses. Mech Mach Theory. 2022;169:104644. doi: 10.1016/j.mechmachtheory.2021.104644
  • Eckert JJ, Silva FL, da Silva SF, et al. Optimal design and power management control of hybrid biofuel–electric powertrain. Appl Energy. 2022;325:119903. doi: 10.1016/j.apenergy.2022.119903
  • Miranda MH, Silva FL, Lourenço MA, et al. Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle. Energy. 2022;257:124769. doi: 10.1016/j.energy.2022.124769
  • Silva FL, Silva LC, Eckert JJ, et al. Parameter influence analysis in an optimized fuzzy stability control for a four-wheel independent-drive electric vehicle. Control Eng Pract. 2022;120:105000. doi: 10.1016/j.conengprac.2021.105000
  • Mahmoud M. Fuzzy control, estimation and diagnosis: single and interconnected systems. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer Cham; 2018.
  • Wu Q, Luo S, Cole C. Longitudinal dynamics and energy analysis for heavy haul trains. J Mod Transp. 2014;22(3):127–136. doi: 10.1007/s40534-014-0055-x
  • Gen M, Cheng R, Lin L. Network models and optimization: multiobjective genetic algorithm approach. London: Springer Science & Business Media; 2008.
  • Lopes MV, Eckert JJ, Martins TS, et al. Multi-objective optimization of piezoelectric vibrational energy harvester orthogonal spirals for ore freight cars. J Braz Soc Mech Sci Eng. 2021;43(6):1–13. doi: 10.1007/s40430-021-03014-4
  • Lopes MV, Dias APC, Eckert JJ, et al. Design of triple-beam internal-impact piezoelectric harvester optimized for energy and bandwidth. J Braz Soc Mech Sci Eng. 2022;44(6). doi: 10.1007/s40430-022-03553-4