147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Towards digital twin trains: implementing a cloud-based framework for railway vehicle dynamics simulation

ORCID Icon, , , , &
Received 10 Nov 2023, Accepted 09 May 2024, Published online: 18 May 2024

References

  • Shafto M, Conroy M, Doyle R, et al. Modeling, simulation, information technology and processing roadmap. Washington, DC: National Aeronautics and Space Administration; 2010.
  • Redeker M, Weskamp JN, Rössl B, et al. Towards a digital twin platform for industrie 4.0. In: editors. In: 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS); Victoria, BC, Canada; [2021 May 10–12].
  • Semeraro C, Lezoche M, Panetto H, et al. Digital twin paradigm: a systematic literature review. Comput Ind. 2021;130:103469. doi: 10.1016/j.compind.2021.103469
  • Bernal E, Wu Q, Spiryagin M, et al. Augmented digital twin for railway systems. Veh Syst Dyn. 2023;62(1):1–17. doi: 10.1080/00423114.2023.2194543
  • Spiryagin M, Edelmann J, Klinger F, et al. Vehicle system dynamics in digital twin studies in rail and road domains. Veh Syst Dyn. 2023;61(7):1737–1786. doi: 10.1080/00423114.2023.2188228
  • Zhai W, Wang K, Cai C. Fundamentals of vehicle–track coupled dynamics. Veh Syst Dyn. 2009;47(11):1349–1376. doi: 10.1080/00423110802621561
  • Zhai W. Vehicle-track coupled dynamics: theory and applications. Singapore: Springer Nature; 2020.
  • Xu L, Zhai W. Train–track coupled dynamics analysis: system spatial variation on geometry, physics and mechanics. Railw Eng Sci. 2020;28(1):36–53. doi: 10.1007/s40534-020-00203-0
  • Ling L, Zhang Q, Xiao X, et al. Integration of car-body flexibility into train–track coupling system dynamics analysis. Veh Syst Dyn. 2017;56(4):485–505. doi: 10.1080/00423114.2017.1391397
  • Zhai W, Han Z, Chen Z, et al. Train–track–bridge dynamic interaction: a state-of-the-art review. Veh Syst Dyn. 2019;57(7):984–1027. doi: 10.1080/00423114.2019.1605085
  • Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 2019;33(sup1):728–739. doi: 10.1080/00423114.1999.12063125
  • Bosso N, Zampieri N. Long train simulation using a multibody code. Veh Syst Dyn. 2016;55(4):552–570. doi: 10.1080/00423114.2016.1267373
  • Zhai WM. Two simple fast integration methods for large-scale dynamic problems in engineering. Int J Numer Method Biomed Eng. 1996;39(24):4199–4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199:AID-NME39>3.0.CO;2-Y
  • Wu Q, Ge X, Han Q-L, et al. Dynamics and control simulation of railway virtual coupling. Veh Syst Dyn. 2022;61(9):1–25.
  • Sytov ES, Bratus AS, Yurchenko D. Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train. Veh Syst Dyn. 2017;56(4):621–637. doi: 10.1080/00423114.2017.1397704
  • Petrenko V. Simulation of railway vehicle dynamics in universal mechanism software. Procedia Eng. 2016;134:23–29. doi: 10.1016/j.proeng.2016.01.033
  • Wang S, Guo H, Zhang S, et al. Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Adv Mech Eng. 2022;14(3):168781322210784. doi: 10.1177/16878132221078491
  • He X, Gai Y, Wu T. Simulation of train–bridge interaction under wind loads: a rigid-flexible coupling approach. Int J Rail Trans. 2017;6(3):163–182. doi: 10.1080/23248378.2017.1415170
  • Sun YQ, Cole C, Boyd P. A numerical method using VAMPIRE modelling for prediction of turnout curve wheel–rail wear. Wear. 2011;271(1–2):482–491. doi: 10.1016/j.wear.2010.10.010
  • Baker C, Hemida H, Iwnicki S, et al. Integration of crosswind forces into train dynamic modelling. Proc Inst Mech Eng F J Rail Rapid Transit. 2011;225(2):154–164. doi: 10.1177/2041301710392476
  • Iwnick S. The Manchester benchmarks for rail vehicle simulation. Veh Syst Dyn. 1999;30(3–4):295–313. doi: 10.1080/00423119808969454
  • Rill G, Bauer F, Kirchbeck M. VTT – a virtual test truck for modern simulation tasks. Veh Syst Dyn. 2019;59(4):635–656. doi: 10.1080/00423114.2019.1705356
  • Cantone L. TrainDy: the new union internationale des chemins de fer software for freight train interoperability. Proc Inst Mech Eng F J Rail Rapid Transit. 2010;225(1):57–70. doi: 10.1243/09544097JRRT347
  • Tang Z, Yuan XL, Xie X, et al. Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Adv Eng Software. 2019;131:153–165. doi: 10.1016/j.advengsoft.2018.12.003
  • Tang Z, Zhang WH, Wu PB. A holistic framework for engineering simulation platform development gluing open-source and home-made software resources. Adv Eng Software. 2014;76:99–109. doi: 10.1016/j.advengsoft.2014.06.004
  • Caíno-Lores S, Fernández AG, García-Carballeira F, et al. A cloudification methodology for multidimensional analysis: Implementation and application to a railway power simulator. Simul Modell Pract Theory. 2015;55:46–62. doi: 10.1016/j.simpat.2015.04.002
  • FedS B, FfdM J, Dias KL. A platform for cloudification of network and applications in the internet of vehicles. Trans Emerg Telecommun Technol. 2020;31(5):20. doi: 10.1002/ett.3961
  • Heydari Beni E, Lagaisse B, Joosen W. Infracomposer: policy-driven adaptive and reflective middleware for the cloudification of simulation & optimization workflows. J Sys Architec. 2019;95:36–46. doi: 10.1016/j.sysarc.2019.03.001
  • Tarim EA, Hc T. Performance evaluation of WebRTC-based online consultation platform. Tur J Electr Eng Comput Sci. 2019;27(6):4314–4327. doi: 10.3906/elk-1903-44
  • Shen G, Pratt I. The development of a railway dynamics modelling and simulation package to cater for current industrial trends. Proc Inst Mech Eng F J Rail Rapid Transit. 2005;215(3):167–178. doi: 10.1243/0954409011531495
  • Chollet H, Sébès M, Maupu JL, et al. The VOCO multi-body software in the context of real-time simulation. Veh Syst Dyn. 2013;51(4):570–580. doi: 10.1080/00423114.2013.768771
  • Spiryagin M, Sun YQ, Cole C, et al. Development of a real-time bogie test rig model based on railway specialised multibody software. Veh Syst Dyn. 2013;51(2):236–250. doi: 10.1080/00423114.2012.724176
  • Li G, Woo J, Lim SB. HPC cloud architecture to reduce HPC workflow complexity in containerized environments. Appl Sci. 2021;11(3):923. doi: 10.3390/app11030923
  • Khan A, Othman M, Madani S, et al. A survey of mobile cloud computing application models. IEEE Commun Surv Tutorials. 2014;16(1):393–413. doi: 10.1109/SURV.2013.062613.00160
  • Manvi SS, Krishna Shyam G. Resource management for infrastructure as a service (IaaS) in cloud computing: a survey. J Network Comput Appl. 2014;41:424–440. doi: 10.1016/j.jnca.2013.10.004
  • Taylor SJE, Anagnostou A, Kiss T, et al. Enabling cloud-based computational fluid dynamics with a platform-as-a-service solution. IEEE Trans Ind Inform. 2019;15(1):85–94. doi: 10.1109/TII.2018.2849558
  • Chaisiri S, Lee B-S, Niyato D. Optimization of resource provisioning cost in cloud computing. IEEE Transactions On Services Computing. 2012;5(2):164–177. doi: 10.1109/TSC.2011.7
  • Iwnicki S, Spiryagin M, Cole C, et al. Handbook of railway vehicle dynamics. Second Edition (2nd ed. CRC Press; 2019. doi: 10.1201/9780429469398
  • Rolle RP, Martucci VD, Godoy EP. Modular framework for digital twins: development and performance analysis. Int J Control Autom Syst. 2021;32(6):1485–1497. doi: 10.1007/s40313-021-00830-w
  • Ahmad S, Spiryagin M, Wu Q, et al. Development of a digital twin for prediction of rail surface damage in heavy haul railway operations. Veh Syst Dyn. 2024;62(1):41–66. doi: 10.1080/00423114.2023.2237620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.