163
Views
5
CrossRef citations to date
0
Altmetric
Articles

Numerical study of the bridge pier scour using gene expression programming

, &
Pages 287-294 | Received 30 Mar 2019, Accepted 18 Oct 2019, Published online: 03 Nov 2019

References

  • Aksoy AO, Bombar G, Arkis T, Guney MS. 2017. Study of the time-dependent clear water scour around circular bridge piers. J Hydrol Hydromech. 65:26–34. doi: 10.1515/johh-2016-0048
  • Alavi AH, Gandomi AH. 2011. A robust data mining approach for formulation of geotechnical engineering systems. Eng Computat J. 28:242–274. doi: 10.1108/02644401111118132
  • Al Saadi S, Abbas R. 2013. Developement of empirical formulas for effect of circular pier and abutment om local scour depth. Kufa J Eng. 4:69–87.
  • Ataie-Ashtiani B, Baratian-Ghorghi Z, Beheshti AA. 2010. Experimental investigation of clear-water local scour of compound piers. J Hydraulic Eng. 136:343–351. doi: 10.1061/(ASCE)0733-9429(2010)136:6(343)
  • Azamathulla HM. 2012. Gene expression programming for prediction of scour depth downstream of sills. J Hydrol. 460–461:156–159. doi: 10.1016/j.jhydrol.2012.06.034
  • Baykasoğlu A, Güllü H, Çanakçi H, Özbakir L. 2008. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl. 35:111–123. doi: 10.1016/j.eswa.2007.06.006
  • Beheshti AA, Ataie-Ashtiani B. 2016. Discussion of “Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions” by M. Najafzadeh. Ocean Eng [Internet]. 123:249–252. doi: 10.1016/j.oceaneng.2016.07.005
  • Benedict ST, Caldwell AW. 2014. A pier-scour database: 2,427 field and laboratory measurements of pier scour. US Geological Survey Data Series.
  • Breusers HNC, Nicollet G, Shen HW. 1977. Local scour around cylindrical piers. J Hydraulic Res. 15:211–252. doi: 10.1080/00221687709499645
  • Cheng NS, Chiew YM, Chen X. 2016. Scaling analysis of pier-scouring processes. J Eng Mech. 142:06016005. doi: 10.1061/(ASCE)EM.1943-7889.0001107
  • Chiew YM. 1992. Scour protection at bridge piers. J Hydraulic Eng. 118:1260–1269. doi: 10.1061/(ASCE)0733-9429(1992)118:9(1260)
  • Ferreira C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. London: Springer.
  • Ferreira C. 2002. Gene expression programming in problem solving. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F. editors. Soft computing and industry. London: Springer.
  • Ferreira C. 2006. Gene expression programming: mathematical modeling by an artificial intelligence. London: Springer.
  • Firat M, Gungor M. 2009. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv Eng Softw. 40:731–737. doi: 10.1016/j.advengsoft.2008.12.001
  • Ghani AA, Mohammadpour R. 2016. Temporal variation of clear-water scour at compound Abutments. Ain Shams Eng J. 7:1045–1052. doi: 10.1016/j.asej.2015.07.005
  • Guven A, Gunal M. 2008. Prediction of scour downstream of grade-control structures using neural networks. J Hydraulic Eng. 134:1656–1660. doi: 10.1061/(ASCE)0733-9429(2008)134:11(1656)
  • Hong J, Chiew Y, Asce M, Yeh P, Chan H. 2016. Evolution of local pier-scour depth with Dune migration in subcritical flow conditions. J Hydraulic Eng. 143:04016098. doi: 10.1061/(ASCE)HY.1943-7900.0001261
  • Johnson PA. 1991. Advancing bridge -pier scour engineering. J Prof Issues Eng Educ Pract. 117:48–55. doi: 10.1061/(ASCE)1052-3928(1991)117:1(48)
  • Khan M, Azamathulla HM, Tufail M, Ab Ghani A. 2012. Bridge pier scour prediction by gene expression programming. Proc Inst Civ Eng Water Manage. 165:481–493. doi: 10.1680/wama.11.00008
  • Khan M, Tufail M, Azamathulla HM. 2012. Gene-expression programming to predict pier scour depth using laboratory data. J Hydroinformatics. 14:628–645. doi: 10.2166/hydro.2011.008
  • Khosronejad A, Kang S, Sotiropoulos F. 2012. Experimental and computational investigation of local scour around bridge piers. Adv Water Res. 37:73–85. doi: 10.1016/j.advwatres.2011.09.013
  • Kothyari UC, Hager WH, Oliveto G. 2007. Generalized approach for clear-water scour at bridge foundation elements. J Hydraulic Eng. 133:1229–1240. doi: 10.1061/(ASCE)0733-9429(2007)133:11(1229)
  • Koza JR. 1992. Genetic Programming: on the Programming of Computers by Means of Natural Selection. London: MIT Press, Cambridge.
  • Melville B, Sheppard DM, Demir H. 2011. Scour at wide piers and long skewed piers. Vol. 682. Washington (DC): Transportation Research Board. doi: 10.17226/14426
  • Melville BW, Sutherland AJ. 1988. Design method for local scour at bridge piers. J Hydraulic Eng. 114:1210–1226. doi: 10.1061/(ASCE)0733-9429(1988)114:10(1210)
  • Melville BW, Sutherland AJ. 1998. Design method for local scour at bridge piers. J Hydraulic Eng. 114:1210–1226. doi: 10.1061/(ASCE)0733-9429(1988)114:10(1210)
  • Mohammadpour R, Ghani AA, Vakili M, Sabzevari T. 2016. Prediction of temporal scour hazard at bridge abutment. Nat Hazards J. 80:1891–1911. doi: 10.1007/s11069-015-2044-8
  • Mohammadpour R, Ghani AAB, Azamathulla HM. 2013. Estimation of dimension and time variation of local scour at short abutment. Int J River Basin Manage. 11:121–135. doi: 10.1080/15715124.2013.772522
  • Moussa YAM. 2013. Modeling of local scour depth downstream hydraulic structures in trapezoidal channel using GEP and ANNs. Ain Shams Eng J. 4:717–722. doi: 10.1016/j.asej.2013.04.005
  • Najafzadeh M. 2015a. Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. J Pipeline Syst Eng Pract. 7:06015001. doi: 10.1061/(ASCE)PS.1949-1204.0000204
  • Najafzadeh M. 2015b. Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures. Eng Sci Technol, Int J. 18:42–51. doi: 10.1016/j.jestch.2014.09.002
  • Najafzadeh M, Azamathulla HM. 2015. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J Comput Civ Eng. 29:1–8. doi: 10.1061/(ASCE)CP.1943-5487.0000376
  • Najafzadeh M, Barani GA. 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci Iran J. 18:1207–1213. doi: 10.1016/j.scient.2011.11.017
  • Najafzadeh M, Barani GA, Azamathulla HM. 2013. GMDH to predict scour depth around a pier in cohesive soils. Appl Ocean Res. 40:35–41. doi: 10.1016/j.apor.2012.12.004
  • Najafzadeh M, Barani GA, Azamathulla HM. 2014. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput Appl. 24:629–635. doi: 10.1007/s00521-012-1258-x
  • Najafzadeh M, Barani GA, Hessami-Kermani MR. 2013. Group method of data handling to predict scour depth around vertical piles under regular waves. Sci Iranica. 20:406–413.
  • Najafzadeh M, Barani GA, Hessami-Kermani MR. 2015. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. 104:387–396. doi: 10.1016/j.oceaneng.2015.05.016
  • Najafzadeh M, Barani GA, Kermani MRH. 2013a. Abutment scour in clear-water and live-bed conditions by GMDH network. Water Sci Technol. 67:1121–1128. doi: 10.2166/wst.2013.670
  • Najafzadeh M, Barani GA, Kermani MRH. 2013b. GMDH based back propagation algorithm to predict abutment scour in cohesive soils. Ocean Eng. 59:100–106. doi: 10.1016/j.oceaneng.2012.12.006
  • Najafzadeh M, Etemad-Shahidi A, Lim SY. 2016. Scour prediction in long contractions using ANFIS and SVM. Ocean Eng. 111:128–135. doi: 10.1016/j.oceaneng.2015.10.053
  • Najafzadeh M, Lim SY. 2015. Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci Inform J. 8:187–196. doi: 10.1007/s12145-014-0144-8
  • Najafzadeh M, Saberi-Movahed F. 2018. GMDH-GEP to predict free span expansion rates below pipelines under waves. Mar Georesources Geotechnol J. 0:1–18.
  • Najafzadeh M, Saberi-Movahed F, Sarkamaryan S. 2018a. NF-GMDH-Based self-organized systems to predict bridge pier scour depth under debris flow effects. Mar Georesources Geotechnol J. 36:589–602. doi: 10.1080/1064119X.2017.1355944
  • Najafzadeh M, Saberi-Movahed F, Sarkamaryan S. 2018b. NF-GMDH-Based self-organized systems to predict bridge pier scour depth under debris flow effects. Mar Georesources Geotechnol. 36:589–602. doi: 10.1080/1064119X.2017.1355944
  • Najafzadeh M, Shiri J, Rezaie-Balf M. 2018. New expression-based models to estimate scour depth at clear water conditions in rectangular channels. Mar Georesources Geotechnol. 36:227–235. doi: 10.1080/1064119X.2017.1303009
  • Onen F. 2014. Prediction of scour at a Side-Weir with GEP, ANN and regression models. Arabian J Sci Eng. 39:6031–6041. doi: 10.1007/s13369-014-1244-y
  • Raudkivi AJ, Ettema R. 1983. Clear-water scour at cylindrical piers. J Hydraulic Eng. 109:338–350. doi: 10.1061/(ASCE)0733-9429(1983)109:3(338)
  • Richardson EV, Davis SR. 2001. HEC-18: evaluating scour at bridges. Washington (DC): Federal Highway Administration. Technical report no. NHI 01-001.
  • Saleh LA. 2018. Studying the seepage phenomena under a concrete dam using SEEP/W and artificial neural network models. IOP Conference Series: materials Science and Engineering. p. 433.
  • Saleh LAM. 2015. Scour depth measurement around piers of Al Hindiya second bridge. J Kerbala Univ. 13:1–12.
  • Sheppard D. 2003. Large scale and live bed local pier scour experiments phase 2 live bed experiments. Final report.
  • Shukri MT. 2017. Experimental study of local scour depth around cylindrical bridge pier. Int J Civ, Environ, Struct, Constr Archit Eng. 11:363–372.
  • Wang CY, Shih HP, Hong JH, Raikar RV. 2013. Prediction of bridge pier scour using genetic programming. J Mar Sci Technol (Taiwan). 21:483–492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.