652
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

A macroscopic approach for calibration and validation of a modified social force model for bidirectional pedestrian streams

, ORCID Icon, & ORCID Icon
Pages 1637-1661 | Received 12 Oct 2018, Accepted 21 Jun 2019, Published online: 04 Jul 2019

References

  • Appert-Rolland, C., P. Degond, and S. Motsch. 2014. “A Macroscopic Model for Bidirectional Pedestrian Flow.” In Pedestrian and Evacuation Dynamics, edited by U. Weidmann, U. Kirsch, and M. Schreckenberg, 575–583. Cham: Springer.
  • Benner, H., T. Kretz, H. Lohmiller, and P. Sukennik. 2017. “Is Calibration a Straight-forward Task If Detailed Trajectory Data is Available?” In the Proceedings of the Transportation Research Board, 96th Annual Meeting, 8th–12th Jan 2017.
  • Blue, V., and J. Adler. 1999. “Cellular Authomata Microsimulation of Bidirectional Pedestrian Flows.” Transportation Research Record: Journal of the Transportation Research Board 1678: 135–141. doi: 10.3141/1678-17
  • Blue, V., and J. Adler. 2000. “Modeling Four-Directional Pedestrian Flows.” Transportation Research Record: Journal of the Transportation Research Board 1710: 20–27. doi: 10.3141/1710-03
  • Campanella, M., S. Hoogendoorn, and W. Daamen. 2014. “Quantitative and Qualitative Validation Procedure for General Use of Pedestrian Models.” In Proceedings of the Conference on Pedestrian and Evacuation Dynamics 2012 (PED2012), edited by U. Weidmann, U. Kirsch, and M. Schreckenberg, 891–905. Cham: Springer.
  • Daamen, W., M. Campanella, and S. P. Hoogendoorn. 2013. “Calibration of Nomad Parameters Using Empirical Data.” In Traffic and Granular Flow ‘11, edited by V. Kozlov, A. Buslaev, A. Bugaev, M. Yashina, A. Schadschneider, and M. Schreckenberg, 109–120. Berlin, Heidelberg: Springer.
  • Daamen, W., and S. P. Hoogendoorn. 2012. “Calibration of Pedestrian Simulation Model for Emergency Doors by Pedestrian Type.” Transportation Research Record: Journal of the Transportation Research Board 2316: 69–75. doi: 10.3141/2316-08
  • Dias, C., M. Iryo-Asano, H. Nishiuchi, and T. Todoroki. 2018. “Calibrating a Social Force Based Model for Simulating Personal Mobility Vehicles and Pedestrian Mixed Traffic.” Simulation Modelling Practice and Theory 87: 395–411. doi: 10.1016/j.simpat.2018.08.002
  • Dias, C., and R. Lovreglio. 2018. “Calibrating Cellular Automaton Models for Pedestrians Walking Through Corners.” Physics Letters A 382 (19): 1255–1261. doi: 10.1016/j.physleta.2018.03.022
  • Duives, D., W. Daamen, and S. Hoogendoorn. 2013. “State-of-the-art Crowd Motion Simulation Models.” Transportation Research Part C 37: 193–209. doi: 10.1016/j.trc.2013.02.005
  • Duives, D. C., W. Daamen, and S. P. Hoogendoorn. 2016. “Continuum Modelling of Pedestrian Flows–Part 2: Sensitivity Analysis Featuring Crowd Movement Phenomena.” Physica A: Statistical Mechanics and its Applications 447: 36–48. doi: 10.1016/j.physa.2015.11.025
  • Flötteröd, G., and G. Lämmel. 2015. “Bidirectional Pedestrian Fundamental Diagram.” Transportation Research Part B 71: 194–212. doi: 10.1016/j.trb.2014.11.001
  • Geroliminis, N., and C. F. Daganzo. 2008. “Existence of Urban-Scale Macroscopic Fundamental Diagrams: Some Experimental Findings.” Transportation Research Part B 9: 759–770. doi: 10.1016/j.trb.2008.02.002
  • Gloor, C. D. 2005. “Distributed Intelligence in Real World Mobility Simulations.” PhD diss., Swiss Federal Institute of Technology Zurich.
  • Gloor, C. 2016. “PEDSIM – Pedestrian Crowd Simulation.” http://pedsim.silmaril.org/.
  • Handel, O., and A. Borrmann. 2017. “Service Bottlenecks in Pedestrian Dynamics.” Transportmetrica A: Transport Science 14 (5–6): 392–405. doi: 10.1080/23249935.2017.1280712
  • Hanseler, F., M. Bierlaire, B. Farooq, and T. Muhlematter. 2014. “A Macroscopic Loading Model for Time-Varying Pedestrian Flows in Public Walking Areas.” Transportation Research Part B 69: 60–80. doi: 10.1016/j.trb.2014.08.003
  • Hanseler, F., W. H. K. Lam, M. Bierlaire, G. Lederrey, and M. Nikolic. 2017b. “A Dynamic Network Loading Model for Anisotropic and Congested Pedestrian Flows.” Transportation Research Part B 95: 149–168. doi: 10.1016/j.trb.2016.10.017
  • Hanseler, F., N. Molyneaux, and M. Bierlaire. 2017a. “Estimation of Pedestrian Origin-Destination Demand in Train Stations.” Transportation Science 51 (3): 981–997. doi: 10.1287/trsc.2016.0723
  • Helbing, D., and P. Molnar. 1995. “Social Force Model for Pedestrian Dynamics.” Physical Review E 51 (5): 4282–4286. doi: 10.1103/PhysRevE.51.4282
  • Hoogendoorn, S. P., M. C. Campanella, and W. Daamen. 2010. “Macroscopic Fundamental Diagrams for Pedestrian Networks.” Presented at 89th Annual Meeting of the Transportation Research Board, Washington, DC.
  • Hoogendoorn, S. P., and W. Daamen. 2006. “Microscopic Parameter Identification of Pedestrian Models and Implications for Pedestrian Flow Modeling.” Transportation Research Record: Journal of the Transportation Research Board 1982: 57–64. doi: 10.1177/0361198106198200108
  • Hoogendoorn, S. P., W. Daamen, V. Knoop, J. Steenbakkers, and M. Sarvi. 2017 “Macroscopic Fundamental Diagram for Pedestrian Networks: Theory and Application.” Transportation Research Part C. doi:10.1016/j.trc.2017.09.003
  • Hoogendoorn, S., W. Daamen, and R. Landman. 2007. “Microscopic Calibration and Validation of Pedestrian Models Cross-Comparison of Models Using Experimental Data.” In Pedestrian and Evacuation Dynamics 2005 (PED2005), edited by N. Waldau, P. Gattermann, H. Knoflacher, and M. Schreckenberg, 253–265. Berlin, Heidelberg: Springer.
  • Hussein, M., and T. Sayed. 2017. “A bi-Directional Agent-Based Pedestrian Microscopic Model.” Transportmetrica A: Transport Science 13 (4): 326–355. doi: 10.1080/23249935.2016.1266531
  • Johansson, A., D. Helbing, and P. Shukla. 2007. “Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data.” Advances in Complex Systems 10: 271–288. doi: 10.1142/S0219525907001355
  • Knoop, V. L., H. van Lint, and S. P. Hoogendoorn. (2015). “Traffic Dynamics: Its Impact on the Macroscopic Fundamental Diagram.” Physcia A: Stat. Mech. Appl 438: 236–250. doi: 10.1016/j.physa.2015.06.016
  • Ko, M., T. Kim, and K. Sohn. 2013. “Calibrating a Social-Force-Based Pedestrian Walking Model Basedon Maximum Likelihood Estimation.” Transportation 40: 91–107. doi: 10.1007/s11116-012-9411-z
  • Kretz, T., J. Lohmiller, and P. Sukennik. 2018. “Some Indications on How to Calibrate the Social Force Model of Pedestrian Dynamics.” In the Proceedings of the Transportation Research Board, 97th Annual Meeting, 7th–11th Jan 2018.
  • Lakoba, Y., D. J. Kaup, and N. M. Finkelstein. 2005. “Modifications of the Helbing-Monar-Farkas-Vicsek Social Force Model for Pedestrian Evolution.” Simulation 81 (5): 339–352. doi: 10.1177/0037549705052772
  • Lovreglio, R., C. Dias, X. Song, and L. Ballerini. 2017. “Towards Microscopic Calibration of Pedestrian Simulation Models using Open Trajectory Data-Sets: The Case Study of the Edinburgh Informatics Forum.” In the Proceedings of the Conference on Traffic and Granular Flow (TGF), July 2017.
  • Moussaïd, M., D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz. 2009. “Experimental Study of the Behavioural Mechanisms Underlying Self-Organization in Human Crowds.” Proceedings of the Royal Society B 276: 2755–2762. doi: 10.1098/rspb.2009.0405
  • Moussaïd, M., D. Helbing, and G. Theraulaz. 2011. “How Simple Rules Determine Pedestrian Behavior and Crowd Disasters.” Proceedings of the National Academy of Sciences of the United States of America 108 (17): 6884–6888. doi: 10.1073/pnas.1016507108
  • Nikolic, M., and M. Bierlaire. 2017. “Data-driven Spatio-temporal Discretization for Pedestrian Flow Characterization.” Transportation Research Part C. doi:10.1016/j.trc.2017.08.026
  • Parisi, D., M. Gilman, and H. Moldovan. 2009. “A Modification of the Social Force Model can Reproduce Experimental Data of Pedestrian Flows in Normal Conditions.” Physica A: Statistical Mechanics and its Applications 388 (17): 3600–3608. doi: 10.1016/j.physa.2009.05.027
  • Payet, G. 2016. “Developing a massive real-time crowd simulation framework on the GPU.” Department of Computer Science and Software Engineering University of Canterbury, Christchurch, New Zealand.
  • Porter, E., S. Hamdar, and W. Daamen. 2018. “Pedestrian Dynamics at Transit Stations: An Integrated Pedestrian Flow Modeling Approach.” Transportmetrica A: Transport Science 14 (5–6): 468–483. doi: 10.1080/23249935.2017.1378280
  • Ramezani, M., J. Haddad, and N. Geroliminis. 2015. “Dynamics of Heterogeneity in Urban Networks: Aggregated Traffic Modeling and Hierarchical Control.” Transportation Research Part B 74: 1–19. doi: 10.1016/j.trb.2014.12.010
  • Saberi, M., K. Aghabayk, and A. Sobhani. 2015. “Spatial Fluctuations of Pedestrian Velocities in Bidirectional Streams: Exploring the Effects of Self-Organization.” Physica A: Statistical Mechanics and its Application 434: 120–128. doi: 10.1016/j.physa.2015.04.008
  • Saberi, M., and H. S. Mahmassani. 2012. “Exploring the Properties of Network-Wide Flow-Density Relations in Freeway Networks.” Transportation Research Record: Journal of the Transportation Research Board 2315: 153–163. doi: 10.3141/2315-16
  • Saberi, M., and H. Mahmassani. 2014. “Exploring Areawide Dynamics of Pedestrian Crowds: Three-Dimensional Approach.” Transportation Research Record Journal of the Transportation Research Board 2421: 31–40. doi: 10.3141/2421-04
  • Seer, S., C. Rudloff, T. Matyus, and N. Brandle. 2014. “Validating Social Force Based Models with Comprehensive Real World Motion Data.” Transpotation Research Procedia 2: 724–732. doi: 10.1016/j.trpro.2014.09.080
  • Seyfried, A., B. Steffen, W. Klingsch, and M. Boltes. 2005. “The Fundamental Diagram of Pedestrian Movement Revisited.” Journal of Statistical Mechanics: Theory and Experiment 2005 (10): P10002. doi: 10.1088/1742-5468/2005/10/P10002
  • Seyfried, A., B. Steffen, and T. Lippert. 2006. “Basics of Modeling the Pedestrian Flow.” Physica A: Statistical Mechanics and its Applications 368 (1): 232–238. doi: 10.1016/j.physa.2005.11.052
  • Shahhosseini, Z., M. Sarvi, and M. Saberi. 2017. “Pedestrian Crowd Dynamics Observed at Merging Sections: The Impact of Different Designs on Movement Efficiency.” Transportation Research Record: Journal of the Transportation Research Board 2622: 48–57. doi: 10.3141/2622-05
  • Shahhosseini, Z., M. Sarvi, and M. Saberi. 2018. “Pedestrian Crowd Dynamics in Merging Sections: Revisiting the “Faster-is-Slower” Phenomenon.” Physica A: Statistical Mechanics and Its Applications 491: 101–111. doi: 10.1016/j.physa.2017.09.003
  • Steffen, B. 2010. “A Modification of the Social Force Model by Foresight.” In Pedestrian and Evacuation Dynamics 2008, edited by W. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg, 1902–1910. Berlin, Heidelberg: Springer.
  • Steffen, B., and A. Seyfried. 2010. “Methods for Measuring Pedestrian Density, Flow, Speed and Direction with Minimal Scatter.” Physica A: Statistical Mechanics and its Applications 389 (9): 1902–1910. doi: 10.1016/j.physa.2009.12.015
  • Tak, S., S. Kim, and H. Yeo. 2018. “Agent-based Pedestrian Cell Transmission Model for Evacuation.” Transportmetrica A: Transport Science 14 (5–6): 484–502. doi: 10.1080/23249935.2017.1280559
  • Tian, H., H. He, Y. Wei, X. Yu, and W. Lu. 2009. “Lattice Hydrodynamic Model with Bidirectional Pedestrian Flow.” Physica A: Statistical Mechanics and its Applications 388 (14): 2895–2902. doi: 10.1016/j.physa.2009.02.047
  • van Wageningen-Kessels, F. L. M., S. P. Hoogendoorn, and W. Daamen. (2014). “ Extension of Edie’s Definitions for Pedestrian Dynamics.” Transportation Research Procedia 2: 507–512. doi: 10.1016/j.trpro.2014.09.067
  • Weifeng, F., Y. Lizhong, and F. Weicheng. 2003. “Simulation of bi-Direction Pedestrian Movement Using a Cellular Automata Model.” Physica A: Statistical Mechanics and its Applications 321 (3–4): 633–640. doi: 10.1016/S0378-4371(02)01732-6
  • Wong, S. C., W. L. Leung, S. H. Chan, and W. H. K. Lam. 2010. “Bidirectional Pedestrian Stream Model with Oblique Intersecting Angle.” Journal of Transportation Engineering 136 (3): 234–242. doi: 10.1061/(ASCE)TE.1943-5436.0000086
  • Xie, S., and S. C. Wong. 2015. “A Bayesian Inference Approach to the Development of a Multidirectional Pedestrian Stream Model.” Transportmetrica A: Transport Science 11 (1): 61–73. doi: 10.1080/23249935.2014.924165
  • Xue, Y., J. J. Tian, H. D. He, W. Z. Lu, and Y. F. Wei. 2009. “Exploring Jamming Transitions and Density Waves in Bidirectional Pedestrian Traffic.” The European Physical Journal B 69 (2): 289–295. doi: 10.1140/epjb/e2009-00149-8
  • Yang, X., W. Daamen, S. P. Hoogendoorn, Y. Chen, and H. Dong. 2014. “Breakdown Phenomenon Study in the Bidirectional Pedestrian Flow.” Transportation Research Procedia 2: 456–461. doi: 10.1016/j.trpro.2014.09.060
  • Zeng, W., P. Chen, H. Nakamura, and M. Iryo-Asano. 2014. “Application of Social Force Model to Pedestrian Behavior Analysis at Signalized Crosswalk.” Transportation Research Part C 40: 143–159. doi: 10.1016/j.trc.2014.01.007
  • Zeng, W., P. Chen, G. Yu, and Y. Wang. 2017. “Specification and Calibration of a Microscopic Model for Pedestrian Dynamic Simulation at Signalized Intersections: A Hybrid Approach.” Transportation Research Part C 80: 37–70. doi: 10.1016/j.trc.2017.04.009
  • Zeng, W., H. Nakamura, and P. Chen. 2014. “A Modified Social Force Model for Pedestrian Behavior Simulation at Signalized Crowsswalks.” Procedia Social and Behavioral Sciences 138: 521–530. doi: 10.1016/j.sbspro.2014.07.233
  • Zhang, J., W. Klingsch, A. Schadschneider, and A. Seyfried. 2012. “Ordering in Bidirectional Pedestrian Flows and its Influence on the Fundamental Diagram.” Journal of Statistical Mechanics: Theory and Experiment 2012: P02002.
  • Zhang, J., and A. Seyfried. 2013. “Empirical Characteristics of Different Types of Pedestrian Streams.” Procedia Engineering 62: 655–662. doi: 10.1016/j.proeng.2013.08.111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.