1,268
Views
2
CrossRef citations to date
0
Altmetric
Articles

Modelling the impact of context in real-world highway pull-out dynamics to inform acceptable path planning of automated vehicles

, &
Article: 2043951 | Received 30 Aug 2021, Accepted 14 Feb 2022, Published online: 07 Mar 2022

References

  • Abe, Genya, Kenji Sato, and Makoto Itoh. 2018. “Driver Trust in Automated Driving Systems: The Case of Overtaking and Passing.” IEEE Transactions on Human-Machine Systems 48: 85–94. doi:10.1109/THMS.2017.2781619.
  • Ali, Yasir, Zuduo Zheng, Md Mazharul Haque, Mehmet Yildirimoglu, and Simon Washington. 2020. “Understanding the Discretionary Lane-Changing Behaviour in the Connected Environment.” Accident Analysis and Prevention 137: 105463. doi:10.1016/j.aap.2020.105463.
  • Balal, Esmaeil, Ruey Long Cheu, Thompson Gyan-Sarkodie, and Jessica Miramontes. 2014. “Analysis of Discretionary Lane Changing Parameters on Freeways.” International Journal of Transportation Science and Technology 3: 277–296. doi:10.1260/2046-0430.3.3.277.
  • Balal, Esmaeil, Ruey Long Cheu, and Thompson Sarkodie-Gyan. 2016. “A Binary Decision Model for Discretionary Lane Changing Move Based on Fuzzy Inference System.” Transportation Research Part C: Emerging Technologies 67: 47–61. doi:10.1016/j.trc.2016.02.009.
  • Ballesteros-Tolosana, Iris, Sorin Olaru, Pedro Rodriguez-Ayerbe, Guillermo Pita-Gil, and Renaud Deborne. 2017. “Collision-Free Trajectory Planning for Overtaking on Highways.” IEEE 56th Annual Conference on Decision and Control, 2551–2556. doi:10.1109/CDC.2017.8264028.
  • Bar-Gera, Hillel, and David Shinar. 2005. “The Tendency of Drivers to Pass Other Vehicles.” Transportation Research Part F: Traffic Psychology and Behaviour 8: 429–439. doi:10.1016/j.trf.2005.06.001.
  • Bärgman, Jonas, Kip Smith, and Julia Werneke. 2015. “Quantifying Drivers’ Comfort-Zone and Dread-Zone Boundaries in Left Turn Across Path/Opposite Direction (LTAP/OD) Scenarios.” Transportation Research Part F: Traffic Psychology and Behaviour 35: 170–184. doi:10.1016/j.trf.2015.10.003.
  • Bärgman, Jonas, Nicole van Nes, Christoph Michiel, Reinier Jansen, Veerle Heijne, Oliver Carsten, Mandy Dotzauer, et al. 2017. “The UDrive Dataset and Key Analysis Results.” doi:10.26323/UDRIVE.
  • Barmpounakis, E. N., E. I. Vlahogianni, and J. C. Golias. 2016a. “Vision-Based Multivariate Statistical Modeling for Powered Two-Wheelers Maneuverability During Overtaking in Urban Arterials.” Transportation Letters 8: 167–176. doi:10.1080/19427867.2015.1122399.
  • Barmpounakis, E. N., E. I. Vlahogianni, and J. C. Golias. 2016b. “Modeling Cooperation and Powered-Two Wheelers Short-Term Strategic Decisions During Overtaking in Urban Arterials.” International Journal of Transportation Science and Technology 5 (4): 227–238.
  • Barmpounakis, E. N., E. I. Vlahogianni, and J. C. Golias. 2017. “Identifying Predictable Patterns in the Unconventional Overtaking Decisions of PTW for Cooperative ITS.” IEEE Transactions on Intelligent Vehicles 3 (1): 102–111.
  • Bellem, Hanna, Thorben Schönenberg, Josef F. Krems, and Michael Schrauf. 2016. “Objective Metrics of Comfort: Developing a Driving Style for Highly Automated Vehicles.” Transportation Research Part F: Traffic Psychology and Behaviour 41: 45–54. doi:10.1016/j.trf.2016.05.005.
  • Brackstone, Mark, Ben Waterson, and Mike McDonald. 2009. “Determinants of Following Headway in Congested Traffic.” Transportation Research Part F: Traffic Psychology and Behaviour 12: 131–142. doi:10.1016/j.trf.2008.09.003.
  • Chandra, S., and S. Shukla. 2012. “Overtaking Behavior on Divided Highways Under Mixed Traffic Conditions.” Procedia – Social and Behavioral Sciences 43: 313–322. doi:10.1016/j.sbspro.2012.04.104.
  • Chen, Rong, Kristofer D. Kusano, and Hampton C. Gabler. 2015. “Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.” Traffic Injury Prevention 16: S176–S181. doi:10.1080/15389588.2015.1057281.
  • Dixit, Shilp, Saber Fallah, Umberto Montanaro, Mehrdad Dianati, Alan Stevens, Francis Mccullough, and Alexandros Mouzakitis. 2018. “Trajectory Planning and Tracking for Autonomous Overtaking: State-of-the-Art and Future Prospects.” Annual Reviews in Control 45: 76–86. doi:10.1016/j.arcontrol.2018.02.001.
  • Dozza, Marco, Ron Schindler, Giulio Bianchi-Piccinini, and Johan Karlsson. 2016. “How Do Drivers Overtake Cyclists?” Accident Analysis and Prevention 88: 29–36. doi:10.1016/j.aap.2015.12.008.
  • Elbanhawi, Mohamed, Milan Simic, and Reza Jazar. 2015. “In the Passenger Seat: Investigating Ride Comfort Measures in Autonomous Cars.” IEEE Intelligent Transportation Systems Magazine 7: 4–17. doi:10.1109/MITS.2015.2405571.
  • Epskamp, S. 2019. “semPlot: Path Diagrams and Visual Analysis of Various SEM Packages.” R package version 1.1.2. https://CRAN.R-project.org/package=semPlot.
  • Fagnant, Daniel J., and Kara Kockelman. 2015. “Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations.” Transportation Research Part A: Policy and Practice 77: 167–181. doi:10.1016/j.tra.2015.04.003.
  • Farah, Haneen. 2013. “Modeling Drivers Passing Duration and Distance in a Virtual Environment.” IATSS Research 37: 61–67. doi:10.1016/j.iatssr.2013.03.001.
  • Farah, Haneen, Shlomo Bekhor, Abishai Polus, and Tomer Toledo. 2009. “A Passing Gap Acceptance Model for Two-Lane Rural Highways.” Transportmetrica 5: 159–172. doi:10.1080/18128600902721899.
  • Farah, Haneen, Giulio Bianchi Piccinini, Makoto Itoh, and Marco Dozza. 2019. “Modelling overtaking strategy and lateral distance in car-to-cyclist overtaking on rural roads: A driving simulator experiment.” Transportation Research Part F: Traffic Psychology and Behaviour 63: 226–239. https://doi.org/10.1016/j.trf.2019.04.026.
  • Farah, H., A. Polus, S. Bekhor, and T. Toledo. 2007. “Study of Passing Gap Acceptance Behavior Using a Driving Simulator.” Advances in Transportation Studies: An International Journal Special Issue 2007: 9–16.
  • Golob, Thomas F. 2003. “Structural Equation Modeling for Travel Behavior Research.” Transportation Research Part B: Methodological 37: 1–25. doi:10.1016/S0191-2615(01)00046-7.
  • Gray, Rob, and David M. Regan. 2005. “Perceptual Processes Used by Drivers During Overtaking in a Driving Simulator.” Human Factors 47: 394–417. doi:10.1518/0018720054679443.
  • Hartwich, Franziska, Matthias Beggiato, and Josef F. Krems. 2018. “Driving Comfort, Enjoyment and Acceptance of Automated Driving–Effects of Drivers’ Age and Driving Style Familiarity.” Ergonomics 61: 1017–1032. doi:10.1080/00140139.2018.1441448.
  • Hegeman, Geertje. 2008. “Assisted Overtaking An Assessment of Overtaking on Two-Lane Rural Roads.” PhD diss., The Netherlands TRAIL Research School.
  • Hegeman, Geertje, Karel Brookhuis, and Serge Hoogendoorn. 2005. “Opportunities of Advanced Driver Assistance Systems Towards Overtaking.” European Journal of Transport and Infrastructure Research (EJTIR) 5: 281–296.
  • Hill, Corey, Lily Elefteriadou, and Alexandra Kondyli. 2015. “Exploratory Analysis of Lane Changing on Freeways Based on Driver Behavior.” Journal of Transportation Engineering 141: 04014090. doi:10.1061/(ASCE)TE.1943-5436.0000758.
  • Kinnear, Neale, Shaun Helman, Caroline Wallbank, and Graham Grayson. 2015. “An Experimental Study of Factors Associated with Driver Frustration and Overtaking Intentions.” Accident Analysis and Prevention 79: 221–230. doi:10.1016/j.aap.2015.03.032.
  • Knoop, V. L., M. Keyvan-Ekbatani, M. De Baat, H. Taale, and S. P. Hoogendoorn. 2018. “Lane Change Behavior on Freeways: An Online Survey Using Video Clips.” Journal of Advanced Transportation 2018. doi:10.1155/2018/9236028.
  • Kovaceva, Jordanka, Gustav Nero, Jonas Bärgman, and Marco Dozza. 2019. “Drivers Overtaking Cyclists in the Real-World: Evidence from a Naturalistic Driving Study.” Safety Science 119: 199–206. doi:10.1016/j.ssci.2018.08.022.
  • Krajewski, Robert, Julian Bock, Laurent Kloeker, and Lutz Eckstein. 2018. “The HighD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems.” 2018 21st International Conference on Intelligent Transportation Systems (ITSC): 2118-2125. doi:10.1109/ITSC.2018.8569552.
  • Kruber, Friedrich, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch. 2019. “Highway Traffic Data: Macroscopic, Microscopic and Criticality Analysis for Capturing Relevant Traffic Scenarios and Traffic Modeling Based on the HighD Data Set.” https://arxiv.org/abs/1903.04249.
  • Lattarulo, Ray, Daniel Heß, and Joshue Pérez. 2018. “A Linear Model Predictive Planning Approach for Overtaking Manoeuvres Under Possible Collision Circumstances.” 2018 IEEE Intelligent Vehicles Symposium (IV), 1340–1345. doi:10.1109/IVS.2018.8500542.
  • Lee, Suzanne E., Erik CB Olsen, and Walter W. Wierwille. 2004. A Comprehensive Examination of Naturalistic Lane-Changes. Washington, DC: National Highway Traffic Safety Administration.
  • Li, Ye, Ruifeng Gu, Jaeyoung Lee, Min Yang, Qinghong Chen, and Yinggui Zhang. 2021. “The Dynamic Tradeoff Between Safety and Efficiency in Discretionary Lane-Changing Behavior: A Random Parameters Logit Approach with Heterogeneity in Means and Variances.” Accident Analysis and Prevention 153: 106036. doi:10.1016/j.aap.2021.106036.
  • Li, Li, Dong Zhang, Zhi Gang Xu, Ping Wang, and Gui Ping Wang. 2018. “The Roles of Car Following and Lane Changing Drivers’ Anticipations During Vehicle Inserting Process: A Structural Equation Model Approach.” Journal of Advanced Transportation 2018. doi:10.1155/2018/6372861.
  • Ljung Aust, Mikael, and Johan Engström. 2011. A Conceptual Framework for Requirement Specification and Evaluation of Active Safety Functions.” Theoretical Issues in Ergonomics Science 12: 44–65. doi:10.1080/14639220903470213.
  • Llorca, Carlos, and Alfredo García. 2011. “Evaluation of Passing Process on Two-Lane Rural Highways in Spain with New Methodology Based on Video Data.” Transportation Research Record 2262: 42–51. doi:10.3141/2262-05.
  • Mahajan, Vishal, Christos Katrakazas, and Constantinos Antoniou. 2020. “Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning.” Transportation Research Record 2674: 336–347. doi:10.1177/0361198120922210.
  • Mathew, Tom V., and K. V. Krishna Rao. 2007. “Capacity and Level of Service at Unsignalized Intersections, Final Report: Volume 1-Two-Way Stop-Controlled Intersections.” In Introduction to Transportation Engineering, 3:46. http://pubsindex.trb.org/view.aspx?id=476626.
  • Matson, T. M., and T. W. Forbes. 1938. “Overtaking and Passing Requirements as Determined from a Moving Vehicle.” Highway Research Board Proceedings 18: 100–112.
  • Naranjo, José E., Carlos González, Ricardo García, and Teresa De Pedro. 2008. “Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver.” IEEE Transactions on Intelligent Transportation Systems 9: 438–450. doi:10.1109/TITS.2008.922880.
  • Nie, Jianqiang, Jian Zhang, X. Wan, Wanting Ding, and Bin Ran. 2016. “Modeling of Decision-Making Behavior for Discretionary Lane-Changing Execution.” 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC): 707–712. doi:10.1109/ITSC.2016.7795631.
  • Nussbeck, Fridtjof W., Michael Eid, and Tanja Lischetzke. 2006. “Analysing Multitrait-Multimethod Data with Structural Equation Models for Ordinal Variables Applying the WLSMV Estimator: What Sample Size Is Needed for Valid Results?” British Journal of Mathematical and Statistical Psychology 59: 195–213. doi:10.1348/000711005X67490.
  • Oliveira, Luis, Karl Proctor, Christopher G. Burns, and Stewart Birrell. 2019. “Driving Style: How Should an Automated Vehicle Behave?” Information 10: 219. doi:10.3390/info10060219.
  • Papakostopoulos, Vassilis, Eleana Georgia Spanou, Dimitris Nathanael, and Kostas Gkikas. 2010. “Understanding Overtaking, Beyond Limitations of the Visual System in Making Spatiotemporal Estimations.” ECCE 2010 – European Conference on Cognitive Ergonomics 2010: The 28th Annual Conference of the European Association of Cognitive Ergonomics, 169–72. doi:10.1145/1962300.1962334.
  • R Core Team. 2019. “R: A Language and Environment for Statistical computing”. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/
  • Rosseel, Y. 2012. “lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software 48: 1–36. https://www.jstatsoft.org/v48/i02/.
  • Rosseel, Y. 2021. “The lavaan tutorial.” lavaan Tutor. 37.
  • Ryan, J. A., and J. M. Ulrich. 2020. quantmod: Quantitative Financial Modelling Framework. R package version 0.4.18. https://CRAN.R-project.org/package=quantmod.
  • Sayer, James R, Mary Lynn Mefford, and Ritchie W Huang. 2003. “The Effects of Lead-Vehicle Size on Driver Following Behavior: Is Ignorance Truly Bliss?” Second International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, 21–24. doi:10.17077/drivingassessment.1127.
  • Schermelleh-Engel, Karin, Helfried Moosbrugger, and Hans Müller. 2003. “Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures.” MPR-Online 8: 23–74.
  • Schoenmakers, Mathijs, Dujuan Yang, and Haneen Farah. 2021. “Car-Following Behavioural Adaptation When Driving Next to Automated Vehicles on a Dedicated Lane on Motorways: A Driving Simulator Study in the Netherlands.” Transportation Research Part F: Traffic Psychology and Behaviour 78: 119–129. doi:10.1016/j.trf.2021.01.010.
  • Sourelli, Anna-Maria, Ruth Welsh, and Pete Thomas. 2021. “Objective and Perceived Risk in Overtaking: The Impact of Driving Context.” Transportation Research Part F: Traffic Psychology and Behaviour 81: 190–200. doi:10.1016/j.trf.2021.05.018.
  • Toledo, Tomer, Charisma F. Choudhury, and Moshe E. Ben-Akiva. 2005. “Lane-Changing Model with Explicit Target Lane Choice.” Transportation Research Record 1934: 157–165. doi:10.3141/1934-17.
  • Toledo, Tomer, and Haneen Farah. 2011. “Alternative Definitions of Passing Critical Gaps.” Transportation Research Record: Journal of the Transportation Research Board 2260: 76–82. doi:10.3141/2260-09.
  • Toledo, Tomer, Haris N Koutsopoulos, and Moshe E Ben-akiva. 2003. “Modeling Integrated Lane-Changing Behavior.” Transportation Research Record 1857: 30–38.
  • Toledo, Tomer, and David Zohar. 2007. “Modeling Duration of Lane Changes.” Transportation Research Record 1999: 71–78. doi:10.3141/1999-08.
  • United Nations. 2021. Uniform Provisions Concerning the Approval of Vehicles with Regard to Automated Lane Keeping Systems. Addendum 156 – UN Regulation No. 157. https://unece.org/sites/default/files/2021-03/R157e.pdf.
  • Venthuruthiyil, Suvin P., and Mallikarjuna Chunchu. 2021. “Interrupted and Uninterrupted Lane Changes: A Microscopic Outlook of Lane-Changing Dynamics.” Transportmetrica A: Transport Science, 1–20. doi:10.1080/23249935.2021.1965240.
  • Vlahogianni, Eleni I. 2013. “Modeling Duration of Overtaking in Two Lane Highways.” Transportation Research Part F: Traffic Psychology and Behaviour 20: 135–146. doi:10.1016/j.trf.2013.07.003.
  • Wang, Xuesong, Minming Yang, and David Hurwitz. 2019. “Analysis of Cut-in Behavior Based on Naturalistic Driving Data.” Accident Analysis and Prevention 124: 127–137. doi:10.1016/j.aap.2019.01.006.
  • Washington, Simon P., Matthew G. Karlaftis, and Fred L. Mannering. 2003. Statistical and Econometric Methods for Transportation Data Analysis. Boca Raton, FL: Chapman and Hall.
  • Yang, Liu, Xiaomeng Li, Wei Guan, H. Michael Zhang, and Lingling Fan. 2018. “Effect of Traffic Density on Drivers’ Lane Change and Overtaking Maneuvers in Freeway Situation – A Driving Simulator–Based Study.” Traffic Injury Prevention 19: 594–600. doi:10.1080/15389588.2018.1471470.
  • Yang, Minming, Xuesong Wang, and Mohammed Quddus. 2019. “Examining Lane Change Gap Acceptance, Duration and Impact Using Naturalistic Driving Data.” Transportation Research Part C: Emerging Technologies 104: 317–331. doi:10.1016/j.trc.2019.05.024.