1,522
Views
13
CrossRef citations to date
0
Altmetric
Commentary

Toward a better understanding of enteric gliogenesis

& ORCID Icon
Article: e1293958 | Received 20 Dec 2016, Accepted 03 Feb 2017, Published online: 15 Mar 2017

References

  • Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9:286-94; PMID:22392290; https://doi.org/10.1038/nrgastro.2012.32
  • Neunlist M, Van Landeghem L, Mahe MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 2013; 10:90-100; PMID:23165236; https://doi.org/10.1038/nrgastro.2012.221
  • Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst 2000; 81:87-96; PMID:10869706; https://doi.org/10.1016/S0165-1838(00)00127-2
  • Grubisic V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol 2016; PMID:27106597
  • Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P, De Giorgio R. Enteric glial cells: recent developments and future directions. Gastroenterology 2014; 147:1230-7; PMID:25305504; https://doi.org/10.1053/j.gastro.2014.09.040
  • Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Invest 2015; 125:918-25; PMID:25689252; https://doi.org/10.1172/JCI76303
  • Gabella G. Glial cells in the myenteric plexus. Zeitschrift fur Naturforschung Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete 1971; 26:244-5; PMID:4396549
  • Rao M, Nelms BD, Dong L, Salinas-Rios V, Rutlin M, Gershon MD, Corfas G. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia 2015; PMID:26119414
  • Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2015; 63:229-41; PMID:25161129; https://doi.org/10.1002/glia.22746
  • Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2012; 9:625-32; PMID:22890111; https://doi.org/10.1038/nrgastro.2012.138
  • Joseph NM, He S, Quintana E, Kim YG, Nunez G, Morrison SJ. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 2011; 121:3398-411; PMID:21865643; https://doi.org/10.1172/JCI58186
  • Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 2011; 121:3412-24; PMID:21865647; https://doi.org/10.1172/JCI58200
  • Jiang S, Khan MI, Lu Y, Werstiuk ES, Rathbone MP. Acceleration of blood-brain barrier formation after transplantation of enteric glia into spinal cords of rats. Exp Brain Res 2005; 162:56-62; PMID:15599730; https://doi.org/10.1007/s00221-004-2119-3
  • Bergeron KF, Silversides DW, Pilon N. The developmental genetics of Hirschsprung's disease. Clin Genet 2013; 83:15-22; PMID:23043324; https://doi.org/10.1111/cge.12032
  • Burns AJ, Champeval D, Le Douarin NM. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol 2000; 219:30-43; PMID:10677253; https://doi.org/10.1006/dbio.1999.9592
  • Uesaka T, Nagashimada M, Enomoto H. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System. J Neurosci 2015; 35:9879-88; PMID:26156989; https://doi.org/10.1523/JNEUROSCI.1239-15.2015
  • Rothman TP, Tennyson VM, Gershon MD. Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol 1986; 252:493-506; PMID:3537021; https://doi.org/10.1002/cne.902520406
  • Pham TD, Gershon MD, Rothman TP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol 1991; 314:789-98; PMID:1816276; https://doi.org/10.1002/cne.903140411
  • Young HM, Bergner AJ, Muller T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 2003; 456:1-11; PMID:12508309; https://doi.org/10.1002/cne.10448
  • Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet 2013; 83:307-16; PMID:23167617; https://doi.org/10.1111/cge.12054
  • Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med 2009; 13:1193-210; PMID:19538470; https://doi.org/10.1111/j.1582-4934.2009.00813.x
  • Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24; PMID:23639815; https://doi.org/10.1152/ajpgi.00452.2012
  • Liu JA, Lai FP, Gui HS, Sham MH, Tam PK, Garcia-Barcelo MM, Hui CC, Ngan ES. Identification of GLI Mutations in Patients With Hirschsprung Disease That Disrupt Enteric Nervous System Development in Mice. Gastroenterology 2015; 149:1837-48 e5; PMID:26261006; https://doi.org/10.1053/j.gastro.2015.07.060
  • Ngan ES, Garcia-Barcelo MM, Yip BH, Poon HC, Lau ST, Kwok CK, Sat E, Sham MH, Wong KK, Wainwright BJ, et al. Hedgehog/Notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans. J Clin Invest 2011; 121:3467-78; PMID:21841314; https://doi.org/10.1172/JCI43737
  • Okamura Y, Saga Y. Notch signaling is required for the maintenance of enteric neural crest progenitors. Development 2008; 135:3555-65; PMID:18832397; https://doi.org/10.1242/dev.022319
  • Taylor MK, Yeager K, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 2007; 134:2435-47; PMID:17537790; https://doi.org/10.1242/dev.005520
  • Liu JA, Ngan ES. Hedgehog and Notch signaling in enteric nervous system development. Neuro-Signals 2014; 22:1-13; PMID:24356576; https://doi.org/10.1159/000356305
  • Wakamatsu Y, Maynard TM, Weston JA. Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 2000; 127:2811-21; PMID:10851127
  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 2000; 101:499-510; PMID:10850492; https://doi.org/10.1016/S0092-8674(00)80860-0
  • Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43; PMID:23644063; https://doi.org/10.1016/j.ydbio.2013.04.024
  • Kim J, Lo L, Dormand E, Anderson DJ. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 2003; 38:17-31; PMID:12691661; https://doi.org/10.1016/S0896-6273(03)00163-6
  • Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball DW. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci U S A 1997; 94:5355-60; PMID:9144241; https://doi.org/10.1073/pnas.94.10.5355
  • Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995; 172:126-38; PMID:7589793; https://doi.org/10.1006/dbio.1995.0010
  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75:1417-30; PMID:7916661; https://doi.org/10.1016/0092-8674(93)90627-3
  • Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000; 127:2763-72; PMID:10821773
  • Chalazonitis A, D'Autreaux F, Pham TD, Kessler JA, Gershon MD. Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev Biol 2011; 350:64-79; PMID:21094638; https://doi.org/10.1016/j.ydbio.2010.11.017
  • Nishino J, Saunders TL, Sagane K, Morrison SJ. Lgi4 promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 2010; 30:15228-40; PMID:21068328; https://doi.org/10.1523/JNEUROSCI.2286-10.2010
  • Pilon N. Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice. Rare Diseases 2016; 4:e1156287; PMID:27141416; https://doi.org/10.1080/21675511.2016.1156287
  • Bergeron KF, Nguyen CM, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-93; https://doi.org/10.1242/dmm.026773
  • Naka H, Nakamura S, Shimazaki T, Okano H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 2008; 11:1014-23; PMID:19160499; https://doi.org/10.1038/nn.2168
  • Montemayor C, Montemayor OA, Ridgeway A, Lin F, Wheeler DA, Pletcher SD, Pereira FA. Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI. PLoS One 2010; 5:e8910; PMID:20111703; https://doi.org/10.1371/journal.pone.0008910
  • Chiang DY, Cuthbertson DW, Ruiz FR, Li N, Pereira FA. A coregulatory network of NR2F1 and microRNA-140. PloS one 2013; 8:e83358; PMID:24349493; https://doi.org/10.1371/journal.pone.0083358
  • Naka-Kaneda H, Nakamura S, Igarashi M, Aoi H, Kanki H, Tsuyama J, Tsutsumi S, Aburatani H, Shimazaki T, Okano H. The miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proc Natl Acad Sci U S A 2014; 111:1604-9; PMID:24474786; https://doi.org/10.1073/pnas.1315567111
  • Krishnan V, Pereira FA, Qiu Y, Chen CH, Beachy PA, Tsai SY, Tsai MJ. Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 1997; 278:1947-50; PMID:9395397; https://doi.org/10.1126/science.278.5345.1947
  • Takamoto N, You LR, Moses K, Chiang C, Zimmer WE, Schwartz RJ, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development 2005; 132:2179-89; PMID:15829524; https://doi.org/10.1242/dev.01808
  • Hu N, Strobl-Mazzulla PH, Bronner ME. Epigenetic regulation in neural crest development. Dev Biol 2014; 396:159-68; PMID:25446277; https://doi.org/10.1016/j.ydbio.2014.09.034
  • Jacob C, Lotscher P, Engler S, Baggiolini A, Varum Tavares S, Brugger V, John N, Buchmann-Moller S, Snider PL, Conway SJ, et al. HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia. The Journal of neuroscience : the official journal of the Society for Neuroscience 2014; 34:6112-22; PMID:24760871; https://doi.org/10.1523/JNEUROSCI.5212-13.2014
  • Quintes S, Brinkmann BG, Ebert M, Frob F, Kungl T, Arlt FA, Tarabykin V, Huylebroeck D, Meijer D, Suter U, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci 2016; 19:1050-9; PMID:27294512; https://doi.org/10.1038/nn.4321
  • Wu LM, Wang J, Conidi A, Zhao C, Wang H, Ford Z, Zhang L, Zweier C, Ayee BG, Maurel P, et al. Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat Neurosci 2016; 19:1060-72; PMID:27294509; https://doi.org/10.1038/nn.4322
  • Guil S, Esteller M. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 2012; 19:1068-75; PMID:23132386; https://doi.org/10.1038/nsmb.2428

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.