1,911
Views
32
CrossRef citations to date
0
Altmetric
Mini-Reviews

Altered neurogenesis in mouse models of Alzheimer disease

ORCID Icon
Article: e1327002 | Received 18 Jan 2017, Accepted 28 Apr 2017, Published online: 16 Jun 2017

References

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503):2112-7; https://doi.org/10.1016/S0140-6736(05)67889-0
  • LaFerla FM, Green KN. Animal Models of Alzheimer Disease. Cold Spring Harb Perspect Med 2012; 2(11). pii: a006320; PMID:23002015; https://doi.org/10.1101/cshperspect.a006320
  • Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115(1):5-38; PMID:18038275; https://doi.org/10.1007/s00401-007-0312-8
  • Intlekofer KA, Cotman CW. Exercise counteracts declining hippocampal function in aging and Alzheimer's disease. Neurobiol Dis 2013; 57:47-55; PMID:22750524; https://doi.org/10.1016/j.nbd.2012.06.011
  • Dishman RK, Berthoud H-R, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, Gandevia SC, Gomez-Pinilla F, Greenwood BN, Hillman CH, et al. Neurobiology of Exercise. Obesity 2006; 14(3):345-56; PMID:16648603; https://doi.org/10.1038/oby.2006.46
  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, et al. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci 2011; 108(7):3017-22; https://doi.org/10.1073/pnas.1015950108
  • Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Hazlett KE, Figueroa CM, Kandah CC, Kay CD, Matthews MA, et al. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer's disease. Front Aging Neurosci 2014; 6:61; https://doi.org/10.3389/fnagi.2014.00061
  • Paillard T, Rolland Y, de Souto Barreto P. Protective Effects of Physical Exercise in Alzheimer's Disease and Parkinson's Disease: A Narrative Review. J Clin Neurology (Seoul, Korea) 2015; 11(3):212-9; https://doi.org/10.3988/jcn.2015.11.3.212
  • Ryan SM, Kelly ÁM. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer's disease. Ageing Res Rev 2016; 27:77-92; PMID:27039886; https://doi.org/10.1016/j.arr.2016.03.007
  • Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010; 11(5):339-50; PMID:20354534; https://doi.org/10.1038/nrn2822
  • Winner B, Winkler J. Adult Neurogenesis in Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2015; 7(4)a021287; PMID:25833845; https://doi.org/10.1101/cshperspect.a021287
  • Bayer TA, Wirths O, Majtenyi K, Hartmann T, Multhaup G, Beyreuther K, Czech C. Key Factors in Alzheimer's Disease: ß-amyloid Precursor Protein Processing, Metabolism and Intraneuronal Transport. Brain Pathology 2001; 11:1-11; PMID:11145195; https://doi.org/10.1111/j.1750-3639.2001.tb00376.x
  • Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 2015; 129(1):1-19; PMID:25287911; https://doi.org/10.1007/s00401-014-1347-2
  • Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP. Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J Neurochem 2002; 83(6):1509-24; PMID:12472904; https://doi.org/10.1046/j.1471-4159.2002.01267.x
  • Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, Sugimoto H. Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice. Neuroreport 2007; 18(17):1801-1805; PMID:18090315; https://doi.org/10.1097/WNR.0b013e3282f1c9e9
  • Krezymon A, Richetin K, Halley H, Roybon L, Lassalle J-M, Francès B, Verret L, Rampon C. Modifications of Hippocampal Circuits and Early Disruption of Adult Neurogenesis in the Tg2576 Mouse Model of Alzheimer's Disease. PLOS ONE 2013; 8(9):e76497; PMID:24086745; https://doi.org/10.1371/journal.pone.0076497
  • Rodriguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS ONE 2008; 3(8):e2935; PMID:18698410; https://doi.org/10.1371/journal.pone.0002935
  • Faure A, Verret L, Bozon B, El Tannir El Tayara N, Ly M, Kober F, Dhenain M, Rampon C, Delatour B. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease. Neurobiol Aging 2011; 95(1):92-101; https://doi.org/10.1016/j.neurobiolaging.2009.03.009
  • Cotel MC, Bayer TA, Wirths O. Age-dependent loss of dentate gyrus granule cells in APP/PS1KI mice. Brain Res 2008; 1222:207-13; PMID:18585693; https://doi.org/10.1016/j.brainres.2008.05.052
  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16(6):2027-33; PMID:8604047
  • Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 1998; 18(9):3206-12; PMID:9547229
  • van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2(3):266-70; PMID:10195220; https://doi.org/10.1038/6368
  • Jeong YH, Kim JM, Yoo J, Lee SH, Kim H-S, Suh Y-H. Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer's disease model. J Neurochem 2011; 119(6):1282-93; PMID:21967036; https://doi.org/10.1111/j.1471-4159.2011.07514.x
  • Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ. Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer's disease. Curr Top Behav Neurosci 2013; 15:313-40; PMID:23670818; https://doi.org/10.1007/7854_2012_237
  • Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O. Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol Aging 2012; 33(1):96-107; PMID:20359774; https://doi.org/10.1016/j.neurobiolaging.2010.02.012
  • Huttenrauch M, Brauss A, Kurdakova A, Borgers H, Klinker F, Liebetanz D, Salinas-Riester G, Wiltfang J, Klafki HW, Wirths O. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model. Translational Psychiatry 2016; 6:e800; PMID:27138799; https://doi.org/10.1038/tp.2016.65
  • Yetman MJ, Jankowsky JL. Wild-Type Neural Progenitors Divide and Differentiate Normally in an Amyloid-Rich Environment. J Neurosci 2013; 33(44):17335-41; PMID:24174666; https://doi.org/10.1523/JNEUROSCI.1917-13.2013
  • Kanemoto S, Griffin J, Markham-Coultes K, Aubert I, Tandon A, George-Hyslop PS, Fraser PE. Proliferation, differentiation and amyloid-β production in neural progenitor cells isolated from TgCRND8 mice. Neuroscience 2014; 261:52-9; PMID:24361736; https://doi.org/10.1016/j.neuroscience.2013.12.021
  • Pan H, Wang D, Zhang X, Zhou D, Zhang H, Qian Q, He X, Liu Z, Liu Y, Zheng T, et al. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein. Stem Cell Reports 2016; 7(4):707-18; PMID:27693425; https://doi.org/10.1016/j.stemcr.2016.08.019
  • Wirths O, Bayer TA. Intraneuronal Abeta accumulation and neurodegeneration: Lessons from transgenic models. Life Sci 2012; 91(23-24):1148-52; PMID:22401905; https://doi.org/10.1016/j.lfs.2012.02.001
  • Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 2004; 165(4):1289-300; PMID:15466394; https://doi.org/10.1016/S0002-9440(10)63388-3
  • Breyhan H, Wirths O, Duan K, Marcello A, Rettig J, Bayer TA. APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathol 2009; 117(6):677-85; PMID:19387667; https://doi.org/10.1007/s00401-009-0539-7
  • Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA. Transient intraneuronal Abeta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 2008; 116(6):647-55; PMID:18974993; https://doi.org/10.1007/s00401-008-0451-6
  • Alexandru A, Jagla W, Graubner S, Becker A, Bauscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Ronicke R, et al. Selective Hippocampal Neurodegeneration in Transgenic Mice Expressing Small Amounts of Truncated A{beta} Is Induced by Pyroglutamate-A{beta} Formation. J Neurosci 2011; 31(36):12790-801; PMID:21900558; https://doi.org/10.1523/JNEUROSCI.1794-11.2011
  • Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S, Lefebvre T, Sprenger F, Wirths O, Zweckstetter M, et al. N-truncated amyloid beta (Abeta) 4–42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 2013; 126(2):189-205; PMID:23685882; https://doi.org/10.1007/s00401-013-1129-2
  • Meissner JN, Bouter Y, Bayer TA. Neuron Loss and Behavioral Deficits in the TBA42 Mouse Model Expressing N-Truncated Pyroglutamate Amyloid-beta3-42. J Alzheimers Dis 2015; 45(2):471-82; PMID:25547635; https://doi.org/10.3233/jad-142868
  • Naumann N, Alpár A, Ueberham U, Arendt T, Gärtner U. Transgenic expression of human wild-type amyloid precursor protein decreases neurogenesis in the adult hippocampus. Hippocampus 2010; 20(8):971-9; PMID:19714567; https://doi.org/10.1002/hipo.20693
  • Morgenstern NA, Giacomini D, Lombardi G, Castaño EM, Schinder AF. Delayed dendritic development in newly generated dentate granule cells by cell-autonomous expression of the amyloid precursor protein. Mol Cell Neurosci 2013; 56:298-306; PMID:23851186; https://doi.org/10.1016/j.mcn.2013.07.003
  • Wang B, Wang Z, Sun L, Yang L, Li H, Cole AL, Rodriguez-Rivera J, Lu H-C, Zheng H. The Amyloid Precursor Protein Controls Adult Hippocampal Neurogenesis through GABAergic Interneurons. J Neurosci 2014; 34(40):13314-25; PMID:25274811; https://doi.org/10.1523/JNEUROSCI.2848-14.2014
  • Zhang C, McNeil E, Dressler L, Siman R. Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer's disease. Exp Neurology 2007; 204(1):77-87; PMID:17070803; https://doi.org/10.1016/j.expneurol.2006.09.018
  • Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, Santini D, Bartesaghi R, Ciani E. Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with down syndrome and in Ts65Dn mice. Hippocampus 2007; 17(8):665-78; PMID:17546680; https://doi.org/10.1002/hipo.20308
  • Chakrabarti L, Scafidi J, Gallo V, Haydar TF. Environmental Enrichment Rescues Postnatal Neurogenesis Defect in the Male and Female Ts65Dn Mouse Model of Down Syndrome. Dev Neurosci 2011; 33(5):428-41; PMID:21865665; https://doi.org/10.1159/000329423
  • Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, Perini G, Bartesaghi R, Ciani E. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Human Mol Genet 2011; 20(8):1560-73; PMID:21266456; https://doi.org/10.1093/hmg/ddr033
  • Trazzi S, Fuchs C, Valli E, Perini G, Bartesaghi R, Ciani E. The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome. J Biol Chem 2013; 288(29):20817-29; PMID:23740250; https://doi.org/10.1074/jbc.M113.451088
  • Caillé I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004; 131(9):2173-81; PMID:15073156; https://doi.org/10.1242/dev.01103
  • Lopez-Toledano MA, Shelanski ML. Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 2007; 12(3):229-40; PMID:18057556; https://doi.org/10.3233/JAD-2007-12304
  • Cao X, Südhof TC. A Transcriptively Active Complex of APP with Fe65 and Histone Acetyltransferase Tip60. Science 2001; 293(5527):115-20; PMID:11441186; https://doi.org/10.1126/science.1058783
  • Multhaup G, Huber O, Buée L, Galas M-C. Amyloid Precursor Protein (APP) Metabolites APP Intracellular Fragment (AICD), Aβ42, and Tau in Nuclear Roles. J Biol Chem 2015; 290(39):23515-22; PMID:26296890; https://doi.org/10.1074/jbc.R115.677211
  • Ma Q-H, Futagawa T, Yang W-L, Jiang X-D, Zeng L, Takeda Y, Xu R-X, Bagnard D, Schachner M, Furley AJ, et al. A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol 2008; 10(3):283-94; PMID:18278038; https://doi.org/10.1038/ncb1690
  • Giacomini A, Stagni F, Trazzi S, Guidi S, Emili M, Brigham E, Ciani E, Bartesaghi R. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2015; 82:385-396; PMID:26254735; https://doi.org/10.1016/j.nbd.2015.08.001
  • Ghosal K, Stathopoulos A, Pimplikar SW. APP Intracellular Domain Impairs Adult Neurogenesis in Transgenic Mice by Inducing Neuroinflammation. PLOS ONE 2010; 5(7):e11866; PMID:20689579; https://doi.org/10.1371/journal.pone.0011866

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.