540
Views
58
CrossRef citations to date
0
Altmetric
Articles

Heading for new shores! Overcoming pitfalls in BCI design

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 60-73 | Received 02 Aug 2016, Accepted 20 Nov 2016, Published online: 30 Dec 2016

References

  • Wolpaw J, Wolpaw E. Brain–computer interfacesprinciples and practice. New York (NY): Oxford University Press; 2012.10.1093/acprof:oso/9780195388855.001.0001
  • Lotte F, Bougrain L, Clerc M. Electroencephalography (EEG)-based brain-computer interfaces. In: Wiley encyclopedia on electrical and electronics engineering. Wiley; 2015. doi:http://dx.doi.org/10.1002/047134608X.W8278
  • Borton D, Micera S, Millán JDR, et al. Personalized neuroprosthetics. Sci Transl Med. 2013;5:210rv2.
  • Thakor NV. Translating the brain-machine interface. Sci Transl Med. 2013;5:210ps17.
  • Bashashati A, Fatourechi M, Ward RK, et al. A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J Neural Eng. 2007;4:R32–R57.10.1088/1741-2560/4/2/R03
  • Lotte F, Congedo M, Lécuyer A, et al. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng. 2007;4:R1–R13.10.1088/1741-2560/4/2/R01
  • Allison B, Neuper C. Could anyone use a BCI? In: Brain-Computer Interfaces. London: Springer; 2010. p. 35–54.10.1007/978-1-84996-272-8
  • Makeig S, Kothe C, Mullen T, et al. Evolving signal processing for brain–computer interfaces. Proc. IEEE. 2012;100:1567–1584.10.1109/JPROC.2012.2185009
  • Allison B, Luth T, Valbuena D, et al. BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):107–116. doi:10.1109/TNSRE.2009.2039495
  • Guger C, Daban S, Sellers E, et al. How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett. 2009;462:94–98.10.1016/j.neulet.2009.06.045
  • Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front Hum Neurosci. 2013;7:568. doi:10.3389/fnhum.2013.0056
  • Scherer R, Faller J, Balderas D, et al. Brain-computer interfacing: more than the sum of its parts. Soft Comput. 2013;17(2):317–331.10.1007/s00500-012-0895-4
  • Scherer R, Pfurtscheller G. Thought-based interaction with the physical world. Trends Cogn Sci. 2013;17(10):490–492.10.1016/j.tics.2013.08.004
  • Kübler A, Holz E, Riccio A, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS ONE. 2014;9:e112392.10.1371/journal.pone.0112392
  • Kübler A, Holz EM, Sellers EW, et al. Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users. Arch Phys Med Rehabil. 2015;96(3):S27–S32. doi:10.1016/j.apmr.2014.03.036
  • Zickler C, Halder S, Kleih SC, et al. Brain painting: usability testing according to the user-centered design in end users with severe motor paralysis. Artif Intell Med. 2013;59(2):99–110. doi:10.1016/j.artmed.2013.08.003
  • Nijboer F, Plass-Oude Bos D, Blokland Y, et al. Design requirements and potential target users for brain-computer interfaces–recommendations from rehabilitation professionals. Brain-Computer Interfaces. 2014;1(1):50–61.10.1080/2326263X.2013.877210
  • Huggins JE, Wren PA, Gruis KL. What would brain–computer interface users want? opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2011;12(5):318–324.10.3109/17482968.2011.572978
  • Blain-Moraes S, Schaff R, Gruis KL, et al. Barriers to and mediators of brain–computer interface user acceptance: focus group findings. Ergonomics. 2012;55(5):516–525.10.1080/00140139.2012.661082
  • Andresen EM, Fried-Oken M, Peters B, et al. Initial constructs for patient-centered outcome measures to evaluate brain–computer interfaces. Disabil Rehabil Assist Technol. 2016;11(7):548–557.
  • Huggins JE, Moinuddin AA, Chiodo AE, et al. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch Phys Med Rehabil. 2015;96(3):S38–S45.e5. e5.10.1016/j.apmr.2014.05.028
  • Peters B, Bieker G, Heckman SM, et al. Brain-computer interface users speak up: the virtual users’ forum at the 2013 international brain-computer interface meeting. Arch Phys Med Rehabil. 2015;96(3):S33–S37.10.1016/j.apmr.2014.03.037
  • Holz EM, Botrel L, Kaufmann T, et al. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil. 2015;96(3):S16–S26. doi:10.1016/j.apmr.2014.03.035
  • Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis. 2010;11(5):449–455. doi:10.3109/17482961003777470
  • Sellers EW, Ryan DB, Hauser CK. Noninvasive brain-computer interface enables communication after brainstem stroke. Sci Transl Med. 2014;6:257re7.
  • Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of SMR-based BCI performance. NeuroImage. 2010;51(4):1303–1309. doi:10.1016/j.neuroimage.2010.03.022
  • Ahn M, Ahn S, Hong JH, et al. Gamma band activity associated with BCI performance – simultaneous MEG/EEG study. Front Hum Neurosci. 2013;7. doi:10.3389/fnhum.2013.00848
  • Zhang Y, Xu P, Guo D, et al. Prediction of SSVEP-based BCI performance by the resting-state EEG network. J Neural Eng. 2013;10(6):066017.10.1088/1741-2560/10/6/066017
  • Saeedi S, Chavarriaga R, Leeb R, et al. Adaptive assistance for brain-computer interfaces by online prediction of command reliability. IEEE Comput Intell Mag. 2015;11:32–29. doi:10.1109/MCI.2015.2501550
  • Saeedi S, Chavarriaga R, Millán JDR. Long-term stable control of motor-imagery BCI by a locked-in user through adaptive assistance. IEEE Trans Neural Syst Rehab Eng; Forthcoming.
  • Kaufmann T, Vögele C, Sütterlin S, et al. Effects of resting heart rate variability on performance in the P300 brain-computer interface. Int J Psychophysiol. 2012;83(3):336–341. doi:10.1016/j.ijpsycho.2011.11.018
  • Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty. Science. 1965;150(3700):1187–1188. doi:10.1126/science.150.3700.1187
  • Halder S, Furdea A, Varkuti B, et al. Auditory standard oddball and visual P300 brain-computer interface performance. Int J Bioelectromagn. 2011;13(1):5–6.
  • Kaufmann T, Holz EM, Kubler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci. 2013;7:129. doi:10.3389/fnins.2013.00129
  • Hammer EM, Halder S, Blankertz B, et al. Psychological predictors of SMR-BCI performance. Biol Psychol. 2012;89(1):80–86. doi:10.1016/j.biopsycho.2011.09.006
  • Vukovic A. Motor imagery questionnaire as a method to detect BCI illiteracy. Paper presented at: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010); 2010 7-10 Nov; 2010.
  • Jeunet C, N’Kaoua B, Lotte F. Advances in user-training for mental-imagery based BCI control: psychological and cognitive factors and their neural correlates. Prog Brain Res. 2016;228:3–35.
  • Riccio A, Simione L, Schettini F, et al. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci. 2013;732. doi: 10.3389/fnhum.2013.00732
  • Kleih SC, Nijboer F, Halder S, et al. Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol. 2010;121(7):1023–1031. doi:10.1016/j.clinph.2010.01.034
  • Käthner I, Ruf CA, Pasqualotto E, et al. A portable auditory P300 brain–computer interface with directional cues. Clin Neurophysiol. 2013;124(2):327–338. doi:10.1016/j.clinph.2012.08.006
  • Fried-Oken M, Mooney A, Peters B, et al. A clinical screening protocol for the RSVP keyboard brain–computer interface. Disabil Rehabil Assist Technol. 2015;10(1):11–18. doi:10.3109/17483107.2013.836684
  • Zander TO, Ihme K, Gärtner M, et al. A public data hub for benchmarking common brain–computer interface algorithms. J Neural Eng. 2011;8(2):025021.10.1088/1741-2560/8/2/025021
  • Ledesma-Ramirez C, Bojorges-Valdez E, Yáñez-Suarez O, et al. An open-access P300 speller database. Paper presented at: Fourth International Brain-Computer Interface Meeting; 2010; Monterey, USA; 2010. Available from: https://hal.inria.fr/inria-00549242
  • Bernabeu M, Laxe S, Lopez R, et al. Developing core sets for persons with traumatic brain injury based on the international classification of functioning, disability, and health. Neurorehab Neural Re. 2009;23(5):464–467.10.1177/1545968308328725
  • Schwarzkopf SR, Ewert T, Dreinhofer KE, et al. Towards an ICF core set for chronic musculoskeletal conditions: commonalities across ICF sets for osteoarthritis, rheumatoid arthritis, osteoporosis, low back pain and chronic widespread pain. Chin Rheumatol. 2008;27:1355–1361.
  • Cieza A, Ewer T, Ustun B, et al. Development of ICF core sets for patients with chronic conditions. J Rehabil Med. 2004; Suppl.:9–11.
  • Peters B, Mooney A, Oken B, et al. Soliciting BCI user experience feedback from people with severe speech and physical impairments. Brain Computer Interfaces. 2016;3:47–58.doi:10.1080/2326263X.2015.1138056.
  • Scherer R, Wagner J, Billinger M, et al. Augmenting communication, emotion expression and interaction capabilities of individuals with cerebral palsy. Paper presented at: 2014 6th International Brain-Computer Interface Conference; 2014; Graz, Austria. p. 312–315. doi:10.3217/978-3-85125-378-8-78
  • Daly I, Billinger M, Laparra-Hernández J, et al. On the control of brain-computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013;124(9):1787–1797. doi:10.1016/j.clinph.2013.02.118
  • Scherer R, Billinger M, Wagner J, et al. Thought-based row-column scanning communication board for individuals with cerebral palsy. Ann Phys Rehabil Med. 2015;58(1):14–22. doi:10.1016/j.rehab.2014.11.005
  • Scherer R, Schwarz A, Müller-Putz GR, et al. Game-based BCI training: interactive design for individuals with cerebral palsy. Paper presented at: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2015 Oct; Hong-Kong; 2015a; p. 3175–3180.
  • Scherer R, Schwarz A, Müller-Putz GR, et al. Let’s play Tic-Tac-Toe: a brain-computer interface case study in cerebral palsy. Paper presented at: 2016 IEEE International Conference on Systems, Man and Cybernetics (SMC); 2016 Oct 9-12; Budapest, Hungary.
  • Neumann N, Kubler A. Training locked-in patients: a challenge for the use of brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):169–172. doi:10.1109/TNSRE.2003.814431
  • Neuper C, Pfurtscheller G. Neurofeedback Training for BCI Control Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. In: Graimann B, Pfurtscheller G, Allison B, editors. Frontiers Collection. Springer Berlin Heidelberg; 2010:65–78.
  • Wander JD, Blakely T, Miller KJ, et al. Distributed cortical adaptation during learning of a brain-computer interface task. Proc Nat Acad Sci. 2013;110(26):10818–10823.10.1073/pnas.1221127110
  • Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Res. 2005;25(3):668–677. doi:10.1016/j.cogbrainres.2005.08.014
  • Lotte F, Jeunet C. Towards improved BCI based on human learning principles. Paper presented at: 3rd International Brain-Computer Interfaces Winter Conference; 2015.
  • Shute V. Focus on formative feedback. Rev Educ Res. 2008;78(1):153–189.10.3102/0034654307313795
  • Hattie J, Timperley H. The power of feedback. Rev Educ Res. 2007;77(1):81–112.10.3102/003465430298487
  • Merrill M. First principles of instruction: a synthesis. In: Reiser RA, Dempsey JV, editor. Trends and issues in instructional design and technology. 2nd ed. Upper Saddle River, NJ: Merrill/Prentice Hall; 2007. p. 62–71.
  • Jeunet C, Jahanpour E, Lotte F. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study. J Neural Eng. 2016;13(3):036024.10.1088/1741-2560/13/3/036024
  • Jeunet C, N’Kaoua B, N’Kambou R, et al. Why and how to use intelligent tutoring systems to adapt MI-BCI training to each user? Paper presented at: International BCI meeting; 2016; Monterey, USA.
  • Jeunet C, N’Kaoua B, Subramanian S, et al. Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PLoS ONE. 2015;10(12):e0143962.10.1371/journal.pone.0143962
  • Kleih SC, Kübler A. Psychological factors influencing brain-computer interface (BCI) performance. Paper presented at: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2015; Hong-Kong. p. 3192–3196.
  • Jeunet C, Vi C, Spelmezan D, et al. Continuous tactile feedback for motor-imagery based brain-computer interaction in a multitasking context. Paper presented at Proc. Interact; 2015. p. 2015.
  • Gomez Rodriguez M, Peters J, Hill J, et al. Closing the sensorimotor loop: haptic feedback helps decoding of motor imagery. J Neural Eng. 2011;8:036005.10.1088/1741-2560/8/3/036005
  • Sollfrank T, Ramsay A, Perdikis S, et al. The effect of multimodal and enriched feedback on SMR-BCI performance. Clin Neurophysiol. 2016;127:490–498.10.1016/j.clinph.2015.06.004
  • Lotte F, Faller J, Guger C, et al., editors. Combining BCI with virtual reality: towards new applications and improved BCI towards practical brain-computer interfaces. Berlin Heidelberg: Springer; 2013. p. 197–220.
  • Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297–298. doi:10.1038/18581
  • Blankertz B, Dornhege G, Krauledat M, et al. The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage. 2007;37(2):539–550. doi:10.1016/j.neuroimage.2007.01.051
  • Mason SG, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs. Ann Biomed Eng. 2007;35(2):137–169. doi:10.1007/s10439-006-9170-0
  • Vidaurre C, Kawanabe M, von Bünau P, et al. Toward unsupervised adaptation of LDA for brain-computer interfaces. IEEE Trans Biomed Eng. 2011;58(3):587–597. doi:10.1109/TBME.2010.2093133
  • Faller J, Vidaurre C, Solis-Escalante T, et al. Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):313–319. doi:10.1109/TNSRE.2012.2189584
  • Faller J, Scherer R, Costa U, et al. A co-adaptive brain-computer interface for end users with severe motor impairment. PLoS ONE. 2014;9(7):e101168. doi:10.1371/journal.pone.0101168
  • Samek W, Meinecke FC, Muller KR. Transferring subspaces between subjects in brain--computer interfacing. IEEE Trans Biomed Eng. 2013;60(8):2289–2298. doi:10.1109/TBME.2013.2253608
  • Perdikis S, Leeb R, Millán JDR. Subject-oriented training for motor imagery brain-computer interfaces. Paper presented at: 2014 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’14; 2014. p. 1259–1262.
  • Kobler R, Scherer R. Restricted Boltzmann machines in sensory motor rhythm brain-computer interfacing: a study on inter-subject transfer and co-adaptation. Paper presented at: 2016 IEEE International Conference on Systems, Man and Cybernetics (SMC); 2016 Oct 9-12; Budapest, Hungary.
  • Cecotti H. A self-paced and calibration-less SSVEP-based brain–computer interface speller. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):127–133.10.1109/TNSRE.2009.2039594
  • Kindermans PJ, Schreuder M, Schrauwen B, et al. True zero-training brain-computer interfacing – an online study. PLoS ONE. 2014;9(7):e102504.10.1371/journal.pone.0102504
  • Baykara E, Ruf CA, Fioravanti C, et al. Effects of training and motivation on auditory P300 brain–computer interface performance. Clin Neurophysiol. 2016;127(1):379–387.10.1016/j.clinph.2015.04.054
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York, NY: Springer-Verlag; 2009. doi:10.1007/978-0-387-84858-7
  • Ledoit O, Wolf M. Honey, i shrunk the sample covariance matrix. J Port Manage. 2004;30(4):110–119.10.3905/jpm.2004.110
  • Lemm S, Blankertz B, Dickhaus T, et al. Introduction to machine learning for brain imaging. NeuroImage. 2011;56:387–399.10.1016/j.neuroimage.2010.11.004
  • Lotte F. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc IEEE. 2015;103(6):871–890.10.1109/JPROC.2015.2404941
  • Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag. 2008;25:41–56. doi:10.1109/MSP.2008.4408441
  • Xu R, Jiang N, Mrachacz-Kersting N, et al. Factors of influence on the performance of a short-latency non-invasive brain switch: evidence in healthy individuals and implication for motor function rehabilitation. Front Neurosci. 2015;9.
  • Lotte F. Guide to brain-computer music interfacing. London: In Guide to Brain-Computer Music Interfacing. Springer; 2014. p. 133–161.10.1007/978-1-4471-6584-2
  • Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehab Eng. 2000;8:441–446. doi:10.1109/86.895946
  • Samek W, Kawanabe M, Muller K-R. Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng. 2013;2014(7):50–72.
  • Seeber M, Scherer R, Wagner J, et al. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485. doi:10.3389/fnhum.2014.00485
  • Seeber M, Scherer R, Wagner J, et al. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. NeuroImage. 2015;112:318–326. doi:10.1016/j.neuroimage.2015.03.045
  • Friedrich EVC, Scherer R, Neuper C. The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int J Psychophysiol. 2012;84(1):86–94. doi:10.1016/j.ijpsycho.2012.01.014
  • Friedrich EVC, Neuper C, Scherer R. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS ONE. 2013;8(9):e76214. doi:10.1371/journal.pone.0076214
  • Scherer R, Faller J, Friedrich EVC, et al. Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS ONE. 2015b;10(5):e0123727. doi:10.1371/journal.pone.0123727
  • Scherer R, Faller J, Opisso E, et al. Bring mental activity into action! self-tuning brain-computer interfaces. Paper presented at: 2015 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’15; 2015c.
  • Fatourechi M, Bashashati A, Ward RK, et al. EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol. 2007;118(3):480–494. doi:10.1016/j.clinph.2006.10.019
  • Schlögl A, Keinrath C, Zimmermann D, et al. A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol. 2007;118(1):98–104. doi:10.1016/j.clinph.2006.09.003
  • Daly I, Scherer R, Billinger M, et al. FORCe: fully online and automated artifact removal for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):725–736.10.1109/TNSRE.2014.2346621
  • Pfurtscheller G, Allison B, Bauernfeind G, et al. The hybrid BCI. Front Neurosci. 2010;4:42.
  • Leeb R, Sagha H, Chavarriaga R, et al. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng. 2011;8:025011.10.1088/1741-2560/8/2/025011
  • Muller-Putz G, Leeb R, Tangermann M, et al. Towards noninvasive hybrid brain-computer interfaces: framework, practice, clinical application, and beyond. Proc IEEE. 2015;103:926–943.10.1109/JPROC.2015.2411333
  • Urigüen JA, Garcia-Zapirain B. EEG artifact removal-state-of-the-art and guidelines. J Neural Eng. 2015;12:031001.10.1088/1741-2560/12/3/031001
  • Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861–874.10.1016/j.patrec.2005.10.010
  • Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehab Eng. 2000;8:164–173.
  • Quitadamo LR, Abbafati M, Cardarilli GC, et al. Evaluation of the performances of different P300 based brain-computer interfaces by means of the efficiency metric. J Neurosci Methods. 2012;203:361–368.10.1016/j.jneumeth.2011.10.010
  • Thomas E, Dyson M, Clerc M. An analysis of performance evaluation for motor-imagery based BCI. J Neural Eng. 2013;10:031001.10.1088/1741-2560/10/3/031001
  • Antelis JM, Montesano L, Ramos-Murguialday A, et al. On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals. PLoS ONE. 2013;8:e61976.10.1371/journal.pone.0061976
  • Spüler M, Sarasola-Sanz A, Birbaumer N, et al. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In: Conf Proc IEEE Eng Med Biol Soc, 2015; 2015; Milano (Italy). p. 1083–1086.
  • Müller-Putz G, Scherer R, Brunner C, et al. Better than random: a closer look on BCI results. Int J Bioelectromagn. 2008;10:52–55.
  • Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–190.10.1016/j.jneumeth.2007.03.024
  • Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process, and purpose. Am Stat Taylor & Francis. 2016;70(2):129–133.
  • Nijboer F, Birbaumer N, Kübler A. The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis - a longitudinal study. Front Neurosci. 2010;4:55.
  • McCane LM, Sellers EW, McFarland DJ, et al. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(3-4):207–215.10.3109/21678421.2013.865750
  • Schlögl A, Kronegg J, Huggins JE, et al. Evaluation criteria for BCI research. In: Dornhege G, Millán JDR, Hinterberger T. et al, editor. Toward brain-computer interfacing. Cambridge, MA: MIT press; 2007. p. 373–391.
  • Dal Seno B, Matteucci M, Mainardi LT. The utility metric: a novel method to assess the overall performance of discrete brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):20–28.10.1109/TNSRE.2009.2032642
  • Hill NJ, Häuser AK, Schalk G. A general method for assessing brain–computer interface performance and its limitations. J Neural Eng. 2014;11(2):026018.10.1088/1741-2560/11/2/026018
  • Riccio A, Leotta F, Bianchi L, et al. Workload measurement in a communication application operated through a P300-based brain–computer interface. J Neural Eng. 2011;8(2):025028.10.1088/1741-2560/8/2/025028
  • Hart S, Staveland L. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock P, Meshkati N, editors. Human Mental Workload. North-Holland: Human Mental Workload; 1988. p. 139–183.
  • Nuzzo R. How scientists fool themselves - and how they can stop. Nature. 2015;526:182–185.10.1038/526182a
  • Brouwer AM, Zander TO, Van Erp JB, et al. Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls. Front Neurosci. 2015;9:136.
  • Duncan CC, Barry RJ, Connolly JF, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883–1908.10.1016/j.clinph.2009.07.045
  • Kass RE, Caffo BS, Davidian M, et al. Ten simple rules for effective statistical practice. PLoS Comput Biol. 2016;12:e1004961.10.1371/journal.pcbi.1004961
  • Scherer MJ, Craddock G. Matching person & technology (MPT) assessment process. Technol Disabil. 2002;14(3):125–131.
  • Scherer M, Jutai J, Fuhrer M, et al. A framework for modelling the selection of assistive technology devices (ATDs). Disabil Rehabil Assist Techno. 2007;2(1):1–8.10.1080/17483100600845414

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.