4,707
Views
38
CrossRef citations to date
0
Altmetric
Articles

Closed-loop interaction with the cerebral cortex: a review of wireless implant technology§

, , , , ORCID Icon, , , , , , & show all
Pages 146-154 | Received 10 Aug 2016, Accepted 01 May 2017, Published online: 13 Jul 2017

References

  • Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Nat Acad Sci. 2004 Dec 21;101(51):17849–17854. 10.1073/pnas.0403504101
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002 Jun;113(6):767–791. 10.1016/S1388-2457(02)00057-3
  • Milekovic T, Fischer J, Pistohl T, et al. An online brain–machine interface using decoding of movement direction from the human electrocorticogram. J Neural Eng. 2012 Aug 1;9(4):046003. 10.1088/1741-2560/9/4/046003
  • Hammer J, Fischer J, Ruescher J, et al. The role of ECoG magnitude and phase in decoding position, velocity, and acceleration during continuous motor behavior. Front Neurosci [Internet]. 2013 [cited 2016 Dec 22];7. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2013.00200/abstract
  • Hammer J, Pistohl T, Fischer J, et al. Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb Cortex. 2016 Jan 6;26(6):2863–2881. 10.1093/cercor/bhw033
  • Rousche PJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998 Jul 1;82(1):1–15. 10.1016/S0165-0270(98)00031-4
  • Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006 Jul 13;442(7099):164–171. 10.1038/nature04970
  • Kennedy PR, Bakay RAE. Activity of single action potentials in monkey motor cortex during long-term task learning. Brain Res. 1997 Jun 20;760(1-2):251–254. 10.1016/S0006-8993(97)00051-6
  • Bartels J, Andreasen D, Ehirim P, et al. Neurotrophic electrode: method of assembly and implantation into human motor speech cortex. J Neurosci Methods. 2008 Sep 30;174(2):168–176. 10.1016/j.jneumeth.2008.06.030
  • Lebedev MA, Nicolelis MAL. Brain–machine interfaces: past, present and future. Trends Neurosci. 2006 Sep;29(9):536–546. 10.1016/j.tins.2006.07.004
  • Homer ML, Nurmikko AV, Donoghue JP, et al. Implants and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng. 2013;15:383–405. 10.1146/annurev-bioeng-071910-124640
  • Ball T, Kern M, Mutschler I, et al. Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage. 2009 Jul 1;46(3):708–716. 10.1016/j.neuroimage.2009.02.028
  • Henle C, Raab M, Cordeiro JG, et al. First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevice. 2011 Feb 1;13(1):59–68. 10.1007/s10544-010-9471-9
  • Viventi J, Kim D-H, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011 Dec;14(12):1599–1605. 10.1038/nn.2973
  • Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015 Feb;18(2):310–315.
  • Kellis S, Sorensen L, Darvas F, et al. Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography. Clin Neurophysiol [Internet]. [cited 2015 Jul 6]; Available from: http://www.sciencedirect.com/science/article/pii/S1388245715006306
  • Rouse AG, Williams JJ, Wheeler JJ, et al. Spatial co-adaptation of cortical control columns in a micro-ECoG brain–computer interface. J Neural Eng. 2016;13(5):056018. 10.1088/1741-2560/13/5/056018
  • Kellis S, Miller K, Thomson K, et al. Decoding spoken words using local field potentials recorded from the cortical surface. J Neural Eng. 2010 Oct;7(5):056007. 10.1088/1741-2560/7/5/056007
  • Kellis S, Hanrahan S, Davis T, et al. Decoding hand trajectories from micro-electrocorticography in human patients. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2012. p. 4091–4094.
  • Rouse AG, Williams JJ, Wheeler JJ, et al. Cortical Adaptation to a Chronic Micro-Electrocorticographic Brain Computer Interface. J Neurosci. 2013 Jan 23;33(4):1326–1330. 10.1523/JNEUROSCI.0271-12.2013
  • Gierthmuehlen M, Ball T, Henle C, et al. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach. J. Neurosci. Methods. 2011 Oct 30;202(1):77–86. 10.1016/j.jneumeth.2011.08.021
  • Escabi MA, Read HL, Viventi J, et al. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J Neurophysiol. 2014 Sep 15;112(6):1566–1583. 10.1152/jn.00179.2013
  • Gierthmuehlen M, Wang X, Gkogkidis A, et al. Mapping of sheep sensory cortex with a novel microelectrocorticography grid. J Comp Neurol. 2014 Nov 1;522(16):3590–3608. 10.1002/cne.23631
  • Zippo AG, Romanelli P, Torres Martinez NR, et al. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis). Front Syst Neurosci [Internet]. 2015 May 12 [cited 2016 Jun 29];9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429233/
  • Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443. 10.1093/brain/60.4.389
  • Molina-Luna K, Buitrago MM, Hertler B, et al. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays. J Neurosci Methods. 2007 Mar 30;161(1):118–125. 10.1016/j.jneumeth.2006.10.025
  • Hosp JA, Molina-Luna K, Hertler B, et al. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. J Neurosci Methods. 2008 Jul 30;172(2):255–262. 10.1016/j.jneumeth.2008.05.010
  • Crone NE, Miglioretti DL, Gordon B, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 1998 Dec 1;121(12):2301–2315. 10.1093/brain/121.12.2301
  • Crone NE, Miglioretti DL, Gordon B, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998 Dec 1;121(12):2271–2299. 10.1093/brain/121.12.2271
  • Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography. In: Christa Neuper and Wolfgang Klimesch, editor. Progress in Brain Research [Internet]. Elsevier; 2006 [cited 2013 Jan 22]. p. 275–295. Available from: http://www.sciencedirect.com/science/article/pii/S0079612306590193
  • Jackson A, Mavoori J, Fetz EE. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 2006 Nov 2;444(7115):56–60. 10.1038/nature05226
  • Nishimura Y, Perlmutter SI, Eaton RW, et al. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron. 2013 Dec 4;80(5):1301–1309. 10.1016/j.neuron.2013.08.028
  • Schmidt EM, Bak MJ, Hambrecht FT, et al. Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain. 1996 Apr 1;119(2):507–522. 10.1093/brain/119.2.507
  • Lewis PM, Rosenfeld JV. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res. 2016 Jan;1630(1630):208–224. 10.1016/j.brainres.2015.08.038
  • Matsumoto R, Nair DR, LaPresto E, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004 Jan 10;127(10):2316–2330. 10.1093/brain/awh246
  • Ojemann G, Ojemann J, Lettich E, et al. Cortical language localization in left, dominant hemisphere. Collections. 2009 May 8;112(2):316–326.
  • Collins KL, Guterstam A, Cronin J, et al. Ownership of an artificial limb induced by electrical brain stimulation. Proc Natl Acad Sci. 2016 Dec;19:201616305.
  • Tabot GA, Dammann JF, Berg JA, et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Nat Acad Sci. 2013 May 11;110(45):18279–18284. 10.1073/pnas.1221113110
  • Tabot GA, Kim SS, Winberry JE, et al. Restoring tactile and proprioceptive sensation through a brain interface. Neurobiol Dis. 2015 Nov;83:191–198. 10.1016/j.nbd.2014.08.029
  • Flesher SN, Collinger JL, Foldes ST, et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med. 2016 Oct 19;8(361):361ra141–361ra141. 10.1126/scitranslmed.aaf8083
  • Rizk M, Bossetti CA, Jochum TA, et al. A fully implantable 96-channel neural data acquisition system. J Neural Eng. 2009 Apr 1;6(2):026002. 10.1088/1741-2560/6/2/026002
  • Borton DA, Yin M, Aceros J, et al. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 2013 Apr 1;10(2):026010. 10.1088/1741-2560/10/2/026010
  • Barrese JC, Rao N, Paroo K, et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng. 2013 Dec;10(6):066014. 10.1088/1741-2560/10/6/066014
  • Jorfi M, Skousen JL, Weder C, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng. 2015;12(1):011001. 10.1088/1741-2560/12/1/011001
  • Hirata M, Yoshimine T. Electrocorticographic Brain–Machine Interfaces for Motor and Communication Control. In: Kansaku K, Cohen LG, Birbaumer N, editors. Clinical systems neuroscience [Internet]. Springer Japan; 2015 [cited 2015 Jun 10]. p. 83–100. Available from: http://link.springer.com/chapter/10.1007/978-4-431-55037-2_5
  • Mestais CS, Charvet G, Sauter-Starace F, et al. WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications. IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):10–21. 10.1109/TNSRE.2014.2333541
  • Piangerelli M, Ciavarro M, Paris A, et al. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge. Front Neurol [Internet]. 2014 Aug 25 [cited 2015 May 4];5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142710/
  • Wyler AR, Ojemann GA, Lettich E, et al. Subdural strip electrodes for localizing epileptogenic foci. J Neurosurg. 1984 Jun 1;60(6):1195–1200. 10.3171/jns.1984.60.6.1195
  • Wong CH, Birkett J, Byth K, et al. Risk factors for complications during intracranial electrode recording in presurgical evaluation of drug resistant partial epilepsy. Acta Neurochir. 2009 Jan 1;151(1):37. 10.1007/s00701-008-0171-7
  • Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011 Sep 27;77(13):1295–1304. 10.1212/WNL.0b013e3182302056
  • Sun FT, Morrell MJ. The RNS system: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices. 2014 Aug 21;11(6):563–572. 10.1586/17434440.2014.947274
  • Rouse AG, Stanslaski SR, Cong P, et al. A chronic generalized bi-directional brain–machine interface. J Neural Eng. 2011 Jun 1;8(3):036018. 10.1088/1741-2560/8/3/036018
  • NeuroPace. RNS® system user manual. DN 1015882 Rev 2. 2015. [cited 2015 Jun 09]. Available from: http://www.neuropace.com/product/pdfs/UserManual.pdf.
  • Medtronic. Activa® PC 37601 multi-program neurostimulator─ implant manual. M929110A017. [cited 2015 Jun 09]. Available from: http://manuals.medtronic.com/wcm/groups/mdtcom_sg/@emanuals/@era/@neuro/documents/documents/contrib_210669.pdf.
  • Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain-computer interface in a locked-in patient with ALS. N Engl J Med. 2016 Nov 24;375(21):2060–2066. 10.1056/NEJMoa1608085
  • Schuettler M, Kohler F, Ordonez JS, et al. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2012. p. 3886–3889.
  • Schuettler M, Stiess S, King BV, et al. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J Neural Eng. 2005 Mar 1;2(1):S121. 10.1088/1741-2560/2/1/013
  • Fischer J, Milekovic T, Schneider G, et al. Low-latency multi-threaded processing of neuronal signals for brain-computer interfaces. Front Neuroeng [Internet]. 2014 Jan 28 [cited 2014 Sep 12];7. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904078/
  • Kohler F, Kiele P, Ordonez JS, et al. A polymer-metal two step sealing concept for hermetic neural implant packages. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2014. p. 3981–3984.
  • Bihr U, Anders J, Rickert J, et al. A neural recorder IC with HV input multiplexer for voltage and current stimulation with 18 V compliance. In: European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014 - 40th. 2014. p. 103–106.
  • Volk T, Bentler C, Stocklin S, et al. Novel concept for a wireless and batteryless brain implant array. In: 2015 12th International Multi-Conference on Systems, Signals Devices (SSD). 2015. p. 1–5.
  • Volk T, Yousaf A, Albesa J, et al. Wireless power distribution system for brain implants. In: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International. 2015. p. 1249–1254.
  • Green RA, Toor H, Dodds C, et al. Variation in performance of platinum electrodes with size and surface roughness. Sens Mater. 2012;24(4):165–180.
  • Cogan SF, Troyk PR, Ehrlich J, et al. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. IEEE Trans Biomed Eng. 2005 Sep;52(9):1612–1614. 10.1109/TBME.2005.851503
  • Kerzenmacher S, Ducrée J, Zengerle R, et al. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources. 2008 Jul 15;182(1):1–17. 10.1016/j.jpowsour.2008.03.031
  • Zebda A, Cosnier S, Alcaraz J-P, et al. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices. Sci Rep. 2013 Mar;3(1):26. 10.1038/srep01516
  • Lahr J, Schwartz C, Heimbach B, et al. Invasive brain–machine interfaces: a survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval. J Neural Eng. 2015;12(4):043001. 10.1088/1741-2560/12/4/043001
  • Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011 Sep;12(5):318–324. 10.3109/17482968.2011.572978