216
Views
0
CrossRef citations to date
0
Altmetric
Articles

A functional BCI model by the P2731 working group: psychology

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 82-91 | Received 05 Jan 2021, Accepted 03 May 2021, Published online: 22 Jun 2021

References

  • Lynch JJ, Paskewitz DA. On the mechanisms of the feedback control of human brain-wave activity. In: Peper E, Ancoli S, Quinn M, editors. Mind/Body Integration. Boston: Springer; 1979. p. 325–340.
  • Ahn M, Jun SC. Performance variation in motor imagery brain–computer interface: a brief review. J Neurosci Methods. 2015;243:103–110.
  • Collura TF, Siever F. Chapter 8 - Audio-visual entrainment in relation to mental health and EEG. In: Budzynski TH, Budzynski HK, Evans JR, et al., editors. Introduction to Quantitative EEG and Neurofeedback. Second ed. Cambridge: Academic Press; 2009. p. 195–224.
  • Hughes JR. Responses from the visual cortex of unanesthetized monkeys. In: Pfeiffer CC, Smythies JR, editors. International review of neurobiology. Vol. 7. New York: Academic Press; 1964. p. 99–152.
  • Timofeev I, Chauvette S. Chapter 1 – Neuronal activity during the Sleep-Wake Cycle. In: Dringenberg HC, editor. Handbook of behavioral neuroscience. Vol. 30. London: Academic Press; 2019. p. 3–17.
  • Nicolás B, Sala-Padró J, Cucurell D, et al. Theta rhythm supports hippocampus-dependent integrative encoding in schematic/semantic memory networks. NeuroImage. 2021;226:117558.
  • Wang C, Kang M, Li Z, et al. Altered relation of resting-state alpha rhythm with blood oxygen level dependent signal in healthy aging: evidence by EEG-fMRI fusion analysis. Clin Neurophysiol. 2020;131(9):2105–2114.
  • Kropotov JD. Chapter 3 - Beta Rhythms. In: Kropotov JD, editor. Quantitative EEG, Event-Related Potentials and Neurotherapy. London: Academic Press; 2009. p. 59–76.
  • Yassa MA. Brain Rhythms: higher-Frequency Theta Oscillations Make Sense in Moving Humans. Curr Biol. 2018;28(2):R70–R72.
  • Chan AT, Quiroz JC, Dascalu S, et al. An overview of brain computer interfaces. In: Proceedings of the 30th International Conference on Computers and Their Applications, CATA. 2015; Honolulu, US, p. 9–11.
  • Wolpaw JR, McFarland DJ, Neat GW, et al. An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol. 1991;78(3):252–259. 10.1016/0013-4694(91)90040-B.
  • Khan RA, Naseer N, Saleem S, et al. Cortical tasks-based optimal filter selection: an fNIRS study. J Healthc Eng. 2020;(2020:9152369.
  • Jeunet C, N’Kaoua B, Subramanian S, et al. Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PloS One. 2015;10(12):e0143962.
  • Guger C, Daban S, Sellers E, et al. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci Lett. 2009;462(1):94–98.
  • Guger C, Allison BZ, Großwindhager B, et al. How many people could use an SSVEP BCI? Front Neurosci. 2012;6:169.
  • Easttom C, Bianchi L, Valeriani D, et al. Functional Model for Unifying Brain Computer Interface Terminology. IEEE Open Journal of Engineering in Medicine and Biology. 2021;2:65–70.
  • Middendorf M, McMillan G, Calhoun G, et al. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Neural Syst Rehabil Eng. 2000;8(2):211–214. 2000.
  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–523.
  • Kim DW, Hwang HJ, Lim JH, et al. Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing. J Neurosci Methods. 2011;197(1):180‒185.
  • Müller-Putz GR, Scherer R, Neuper C, et al. Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? Neural systems and rehabilitation engineering. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;14(1):30‒37.
  • Allison BZ, Faller J, Neuper C. BCIs that use steady-state visual evoked potentials or slow cortical potentials. In: Wolpaw JR, Wolpaw EW, editors. Brain-Computer Interfaces: principles and practice. New York: Oxford University Press; 2012. p. 241‒249.
  • Neuper C, Scherer R, Wriessnegger S, et al. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin Neurophysiol. 2009;120(2):239–247.
  • Coyle SM, Ward TE, Markham CM. Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng. 2007;4(3):219–226.
  • Zapała D, Francuz P, Zapała E, et al. The impact of different visual feedbacks in user training on motor imagery control in BCI. Appl Psychophysiol Biofeedback. 2018;43(1):23–35.
  • Christophe E, Frey J, Kronland-Martinet R, et al. Evaluation of a congruent auditory feedback for Motor Imagery BCI. arXiv preprint. 2018. 1805.07064.
  • Gomez-Rodriguez M, Peters J, Hill J, et al. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng. 2011;8(3):036005.
  • Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Nat Acad Sci. 2004;101(51):17849–17854.
  • McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng. 2010;7(3):036007.
  • Sellers EW, Arbel Y, Donchin E. BCIs that use P300 event- related potentials. In: Wolpaw JR, Wolpaw EW, editors. Brain-Computer Interfaces: principles and Practice. New York: Oxford University Press; 2012. p. 215‒226.
  • Ramos-Murguialday A, Schürholz M, Caggiano V, et al. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. PloS One. 2012;7(10):e47048.
  • Guger C, Spataro R, Allison BZ, et al. Complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci. 2017;11:251.
  • Syrov NV, Novichikhina KA, Kir'yanov DA, et al. The Changes of Corticospinal Excitability During the Control of Artificial Hand Through the Brain–Computer Interface Based on the P300 Component of Visual Evoked Potential. Human Physiol. 2019;45(2):152–157.
  • Quiroga R, Reddy L, Kreiman G, et al. Invariant visual representation by single neurons in the human brain. Nature. 2005;435(7045):1102–1107.
  • Kropotov JD. Chapter 3.1 – sensory Systems and attention modulation. In: Kropotov JD, editor. Functional Neuromarkers for Psychiatry. London: Academic Press; 2016. p. 145–146.
  • Treisman AM. Selective attention in man. Br Med Bull. 1964;20(1):12–16.
  • Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience. 2010; 4:186.
  • Jokisch D, Jensen O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci. 2007;27(12):3244–3251.
  • Soon C, Brass M, Heinze HJ, et al. Unconscious determinants of free decisions in the human brain. Nat Neurosci. 2008;11(5):543–545.
  • Jo HG, Naranjo JR, Hinterberger T, et al. Phase synchrony in slow cortical potentials is decreased in both expert and trained novice meditators. Neurosci Lett. 2019;701:142–145.
  • Buzsáki G, Da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–249.
  • Kosslyn SM, Thompson WL, Ganis G. The case for mental imagery. Oxford: Oxford University Press; 2006. p. 4.
  • Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PloS One. 2010;5(4):e9813.
  • Hwang HJ, Kim S, Choi S, et al. EEG-based brain-computer interfaces: a thorough literature survey. International Journal of Human-Computer Interaction. 2013;29(12):814–826.
  • Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. 1997;103(6):642‒651.
  • Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006;31(1):153‒159.
  • López-Larraz E, Antelis JM, Montesano L, et al. Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, San Diego, US; pp. 1798–1801.
  • Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognit Brain Res. 2005;25(3):668–677.
  • Friedrich EV, Scherer R, Neuper C. The effect of distinct mental strategies on classification performance for brain computer interfaces. Int J Psychophysiol. 2012;84(1):86–94.
  • Zhang S, Wang S, Zheng D, et al. A novel pattern with high-level commands for encoding motor imagery-based brain computer interface. Pattern Recognit Lett. 2019;125:28–34.
  • Lugo ZR, Pokorny C, Pellas F, et al. Mental imagery for brain-computer interface control and communication in non-responsive individuals. Ann Phys Rehabil Med. 2020;63(1):21–27.
  • Kleih SC, Nijboer F, Halder S, et al. Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol. 2010;121(7):1023–1031.
  • Lim Y, Ayesh A, Stacey M. Using mouse and keyboard dynamics to detect cognitive stress during mental arithmetic. In: Arai K, Kapoor S, Bhatia R, editors. Intelligent systems in science and information 2014. studies in computational intelligence. Vol. 591. Cham: Springer International Publishing; 2015. p. 335–350.
  • Lim Y, Ayesh A, Stacey M. The Effects of Typing Demand on Emotional Stress, Mouse and Keystroke Behaviours. In:K. Arai, S. Kapoor, R. Bhatia, editors. Intelligent systems in science and information 2014. Studies in computational intelligence. Cham: Springer International Publishing. 2015; 591: p. 209–225
  • Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr. 2010;23(2):194–198.
  • Zapała D, Małkiewicz M, Francuz P, et al. Temperament Predictors of Motor Imagery Control in BCI. Journal of Psychophysiology. 2020;34(4):246–254.
  • Evans N, Gale S, Schurger A, et al. Visual feedback dominates the sense of agency for brain-machine actions. PloS One. 2015;10(6):e0130019.
  • Burde W, Blankertz B Is the locus of control of reinforcement a predictor of brain–computer interface performance? In:Proc 3rd int brain–computer inter- face workshop train course. 2006; Graz, Austria; p. 76–77.
  • Hammer EM, Halder S, Blankertz B, et al. Psychological predictors of SMR-BCI performance. Biol Psychol. 2012;89(1):80–86.
  • Witte M, Kober SE, Ninaus M, et al. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front Hum Neurosci. 2013;7:478.
  • Rimbert S, Gayraud N, Bougrain L, et al. Can a subjective questionnaire be used as brain-computer interface performance predictor? Front Hum Neurosci. 2019;12:529.
  • Benaroch C, Jeunet C, Lotte F Are users’ traits informative enough to predict/explain their mental-imagery based BCI performances? In: 8th Graz BCI Conference2019;Graz, Austria
  • Sannelli C, Vidaurre C, Müller, KR, et al. A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity. PLoS One. 2019;14(1):e0207351.
  • Marchetti M, Priftis K. Brain–computer interfaces in amyotrophic lateral sclerosis: a metanalysis. Clin Neurophysiol. 2015;126(6):1255–1263.
  • Vidaurre C, Murguialday AR, Haufe S, et al. Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation. Neuroimage. 2019;199:375–386.
  • Shahriari Y, Vaughan TM, McCane LM, et al. An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data. J Neural Eng. 2019;16(5):056031.
  • Zapała D, Zabielska-Mendyk E, Augustynowicz P, et al. The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery BCI control. Sci Rep. 2020;10(1):1–11.
  • Vuckovic A, Osuagwu BA. Using a motor imagery questionnaire to estimate the performance of a brain–computer interface based on object oriented motor imagery. Clin Neurophysiol. 2013;124(8):1586–1595.
  • Leeb R, Lee F, Keinrath C, et al. Brain–computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):473–482.
  • Mladenovic J. Standardization of protocol design for user training in EEG-based Brain-Computer Interface. J Neural Eng. 2021;18(1):011003.
  • Lotte F, Jeunet C, Towards improved BCI based on human learning principle. The 3rd International Winter Conference on Brain-Computer Interface, 2015; Gangwon, Korea (South); p. 1–4.
  • Kübler A, Holz EM, Riccio A, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One. 2014;9(12):e112392.
  • Ros T, Enriquez-Geppert S, Zotev V, et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. 2020;143(6):1674–1685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.