284
Views
2
CrossRef citations to date
0
Altmetric
Original Research Article

Extending brain-computer interface access with a multilingual language model in the P300 speller

ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 36-48 | Received 28 Jun 2021, Accepted 11 Oct 2021, Published online: 20 Dec 2021

References

  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–523.
  • Rezeika A, Benda M, Stawicki P, et al. Brain–computer interface spellers: a review. Brain Sci. 2018;8(4):57.
  • Jin J, Allison BZ, Zhang Y, et al. An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions. Int J Neural Syst. 2014;24(8):1450027.
  • Philip JT, George ST. Visual P300 mind-speller brain-computer interfaces: a walk through the recent developments with special focus on classification algorithms. Clin EEG Neurosci. 2020;51(1):19–33.
  • Speier W, Arnold C, Chandravadia N, et al. Improving P300 spelling rate using language models and predictive spelling. Brain-Comput Interfaces. 2018;5(1):13–22.
  • Ryan DB, Frye GE, Townsend G, et al. Predictive spelling with a P300-based brain-computer interface: increasing the rate of communication. Int J Hum Comput Interact. 2011;27(1):69–84.
  • Kaufmann T, Völker S, Gunesch L, et al. Spelling is just a click away - A user-centered brain-computer interface including auto-calibration and predictive text entry. Front Neurosci. 2012 May;6(MAY):72.
  • Ron-Angevin R, da Silva-Sauer L. Proposal of a P300-based BCI speller using a predictive text system. in NEUROTECHNIX 2013 - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics, Funchal, Madeira, Portugal. 2013, p. 35–40. https://doi.org/10.5220/0004612300350040.
  • Speier W, Arnold CW, Deshpande A, et al. Incorporating advanced language models into the P300 speller using particle filtering. J Neural Eng. 2015;12(4):046018.
  • Park J, Kim KE. A POMDP approach to optimizing P300 speller BCI paradigm. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):584–594.
  • Kindermans PJ, Verschore H, Verstraeten D, et al. A P300 BCI for the masses: prior information enables instant unsupervised spelling. Adv Neural Inf Process Syst. 2012;1:710–718.
  • Speier W, Fried I, Pouratian N. Improved P300 speller performance using electrocorticography, spectral features, and natural language processing. Clin Neurophysiol. 2013 Jul;124(7):1321–1328.
  • Speier W, Arnold C, Lu J, et al. Natural language processing with dynamic classification improves P300 speller accuracy and bit rate. J Neural Eng. 2012;9(1):016004.
  • Jin J, Allison BZ, Brunner C, et al. P300 Chinese input system based on Bayesian LDA. Biomedizinische Technik. 2010;55(1):5–18.
  • YAMAMOTO Y, YOSHIKAWA T, FURUHASHI T. Improvement of performance of Japanese P300 speller by switching second display. J Jpn Soc Fuzzy Theory Intell Inf. 2016;28(3):589–597.
  • Kulasingham JP, Vibujithan V, Kithmini WAR, et al. P300 speller for local languages using support vector machines. IEEE International Conference on Information and Automation for Sustainability, Galle, Sri Lanka. 2016 Jul. https://doi.org/10.1109/ICIAFS.2016.7946525
  • Münßinger JI, Halder S, Cleih SC, et al. Brain painting: first evaluation of a new brain-computer interface application with ALS-patients and healthy volunteers. Front Neurosci. 2010;4(NOV):182.
  • Kübler A, Neumann N, Kaiser J, et al. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil. 2001 Nov;82(11):1533–1539.
  • Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999 Mar 25;398(6725):297–298. Nature Publishing Group.
  • Meena YK, Cecotti H, Wong-Lin K, et al. Toward optimization of gaze-controlled human-computer interaction: application to Hindi virtual keyboard for stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2018;26(4):911–922.
  • Gorn S, Bemer RW, Green J. Standard code for information interchange. Standards. 1963;6(8):422–426.
  • De Wit J, Bakker LA, van Groenestijn AC, et al. Caregiver burden in amyotrophic lateral sclerosis: a systematic review. Palliat Med. 2018;32(1):231–245.
  • Logroscino G, Piccininni M. Amyotrophic lateral sclerosis descriptive epidemiology: the origin of geographic difference. Neuroepidemiology. 2019 Feb 01;52(1–2):93–103. S. Karger AG.
  • Arthur KC, Calvo A, Price TR, et al. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016 Aug;7(1):1–6.
  • Shetty P. Grey matter: ageing in developing countries. Lancet. 2012 Apr;379(9823):1285–1287.
  • Shrestha LB. Population aging in developing countries. Health Affairs. 2000 Dec;19(3):204–212.
  • Goutsos D. The Corpus of Greek Texts: a reference corpus for Modern Greek. Corpora. 2010;5(1):29–44.
  • Lu J, Speier W, Hu X, et al. The effects of stimulus timing features on P300 speller performance. Clin Neurophysiol. 2013 Feb;124(2):306–314.
  • Schalk G, McFarland DJ, Hinterberger T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034–1043.
  • Speier W, Deshpande A, Cui L, et al. A comparison of stimulus types in online classification of the P300 speller using language models. PLOS ONE. 2017 Apr;12(4):e0175382.
  • Kaufmann T, Schulz SM, Grünzinger C, et al. Flashing characters with famous faces improves ERP-based brain–computer interface performance. J Neural Eng. 2011 Sep;8(5):056016.
  • Francis WN, Kucera H. Brown corpus manual. Department of Linguistics Brown University, 1979. [cited 2021 Jun. 18]. http://korpus.uib.no/icame/brown/bcm.html
  • Reese S, Boleda G, Cuadros M, et al., Wikicorpus: a word-sense disambiguated multilingual wikipedia corpus. in Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta. 2010, pp. 1418–1421. cited 2021 Jun 18. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.682.2647
  • Duda RO, Hart PE, Stork DG. Pattern classification. Wiley, 2012. [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471056693.html
  • Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics - Doklady. 1966;10(8):707–710.
  • Speier W, Deshpande A, Pouratian N. A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems. Clin Neurophysiol. 2015 Jun;126(6):1171–1177.
  • Brunner P, Joshi S, Briskin S, et al. Does the ‘P300ʹ speller depend on eye gaze? J Neural Eng. 2010;7(5):56013–56022.
  • Speier W, Deshpande A, Pouratian N. A method for optimizing eeg electrode number and configuration for signal acquisition in P300 speller systems. Clin Neurophysiol. 2015 Jun;126(6):1171.
  • Aronoff M, Rees-Miller J. 2003. The handbook of linguistics. 2nd ed. Oxford: Blackwell Publishers; DOI:https://doi.org/10.1111/b.9781405102520.2002.00021.x
  • West R. Visual distraction, working memory, and aging. Mem Cognit. 1999 Mar;27(6):1064–1072.
  • Raaphorst J, de Visser M, Linssen WHJP, et al. The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotrophic Lateral Sclerosis. 2010;11(1–2):27–37.
  • Barulli MR, Piccininni M, Dio CD, et al. Episodic memory and learning rates in amyotrophic lateral sclerosis without dementia. Cortex. 2019;117(March):257–265.
  • Käthner I, Halder S, Hintermüller C, et al. A multifunctional brain-computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel-based electrodes. Front Neurosci. 2017 May;11(MAY):286.
  • Townsend G, LaPallo BK, Boulay CB, et al. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol. 2010 Jul;121(7):1109–1120.
  • Speier W, Chandravadia N, Roberts D, et al. Online BCI typing using language model classifiers by ALS patients in their homes. Brain-Comput Interfaces. 2017;4(1–2):114–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.