117
Views
1
CrossRef citations to date
0
Altmetric
Special issue

A functional BCI model by the P2731 working group: control interface

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 154-160 | Received 23 Mar 2021, Accepted 29 Oct 2021, Published online: 08 Dec 2021

References

  • Sorger, B. and Goebel, R. Real-time fMRI for brain-computer interfacing. In: Handbook of clinical neurology. Vol. 168. Elsevier, Amsterdam Holland; 2020. p. 289–302.
  • Shin, J., Kwon, J., Choi, J. and Im, C.H. Ternary near-infrared spectroscopy brain-computer interface with increased information transfer rate using prefrontal hemodynamic changes during mental arithmetic, breath-Holding, and idle State. IEEE Access. 2018;6:19491–19498.
  • Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017;20(3):327–339.
  • Kalunga, E.K., Chevallier, S., Rabreau, O., et al. Hybrid interface: integrating BCI in multimodal human-machine interfaces. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; IEEE; 2014, Jul. p. 530–535. Besançon, France.
  • Wolpaw JR, Millán JD, Ramsey NF. Brain-computer interfaces: definitions and principles. In: Handbook of clinical neurology. Vol. 168. Elsevier , Amsterdam Holland; 2020 Jan 1. p. 15–23.
  • Leuthardt EC, Moran DW, Mullen TR. Defining surgical terminology and risk for Brain-computer interface technologies. Front Neurosci. 2021 Mar 26;15:172.
  • Mason, S. G., & Birch, G. E. A general framework for brain-computer interface design. IEEE Trans Neural Syst Rehabil Eng. 2003;11(1):70–85.
  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography Cl Neurophysiol. 1988 Dec;70(6):510–523. PMID: 2461285.
  • Merel, J., Pianto, D.M., Cunningham, J.P. and Paninski, L. Encoder-decoder optimization for brain-computer interfaces. PLoS Comput Biol. 2015;11(6):e1004288.
  • Nam, C.S., Nijholt, A. and Lotte, F., eds. Brain–computer interfaces handbook: technological and theoretical advances. Boca Raton, FL:CRC Press; 2018.
  • IEEE. IEEE P1451.5.5. 2021. Accessed on January 11, 2021. Available from: https://standards.ieee.org/project/1451_5_5.html
  • Zhong, S., Liu, Y., Yu, Y., Tang, J., Zhou, Z. and Hu, D. A dynamic user interface based BCI environmental control system. Int J Hum Comput Interact. 2020;36(1):55–66.
  • Ramadan, R.A. and Vasilakos, A.V. Brain-computer interface: control signals review. Neurocomputing. 2017;223:26–44.
  • Sage AP, Rouse WB. Handbook of systems engineering and management. John Wiley & Sons. Lesevier is in Amsterdam, Netherlands; 2014 Dec 31.
  • Spüler, M. A high-speed brain-computer interface (BCI) using dry EEG electrodes. PloS One. 2017;12(2):e0172400.
  • Lin, J.S. and Hsieh, C.H. A wireless BCI-controlled integration system in smart living space for patients. Wireless Pers Commun. 2016;88(2):395–412.
  • Ferrara, F., Bissoli, A., Bastos-Filho, T. Designing an assistive control interface based on utility. In Proceedings of the 1st International Workshop on Assistive Technology IWAT, (Vitoria, Brazil, on CD-ROM); 2015. p. 142–145.
  • Herweg, A., Gutzeit, J., Kleih, S. and Kübler, A. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol. 2016;121:117–124.
  • Chen, X., Zhao, B., Wang, Y., Xu, S. and Gao, X. Control of a 7-DOF robotic arm system with an SSVEP-based BCI. Int J Neural Syst. 2018;28(8):1850018.
  • Tariq, M., Trivailo, P.M. and Simic, M. EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in human neuroscience. Vol. 12. 2018. p. 312. Switzerland.
  • Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F. and Edlinger, G. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci Lett. 2009;462(1):94–98.
  • Nourmohammadi, A., Jafari, M. and Zander, T.O. A survey on unmanned aerial vehicle remote control using brain–computer interface. IEEE Trans Human-Mach Syst. 2018;48(4):337–348.
  • Kostas, D. and Rudzicz, F. Thinker invariance: enabling deep neural networks for BCI across more people. J Neural Eng. 2020;17(5):056008.
  • Zhang, D., Yao, L., Chen, K., et al. Ready for use: subject-independent movement intention recognition via a convolutional attention model. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management; 2018, Oct. p. 1763–1766.
  • Shih, J.J., Krusienski, D.J., Wolpaw, J.R. Brain-computer interfaces in medicine. In: Mayo Clinic Proceedings Vol. 87; Elsevier, Amsterdam Holland; 2012, Mar. p. 268–279. No. 3.
  • Zhang, D., Yao, L., Chen, K. and Monaghan, J. A convolutional recurrent attention model for subject-independent EEG signal analysis. IEEE Signal Process Lett. 2019;26(5):715–719.
  • Ma, Z, Millar R, Hiromoto R, et al. Logics in animal cognition: are they important to Brain-computer interfaces (BCI) and aerospace missions? In: 2010 IEEE Aerospace Conference; IEEE. Big Sky, Montana. 2010.
  • Jolly, B.L.K., Aggrawal, P., Nath, S.S., et al. Universal EEG encoder for learning diverse intelligent tasks. In In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM); IEEE; 2019 Sept. p. 213–218.
  • Zjajo, A. Brain-machine interface: circuits and systems. Singapore: Springer; 2016.
  • Bianchi, L., Quitadamo, L.R., Garreffa, G., Cardarilli, G.C. and Marciani, M.G. Performances evaluation and optimization of brain-computer -interface systems in a copy spelling task. IEEE Trans Neural Syst Rehabil Eng. 2007;15(2):207–216.
  • Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc Natl Acad Sci USA. 2004;101:17849–17854.
  • Bianchi L. A videogame driven by the mind: are motor acts necessary to play? Adv Intell Syst Comput. 2020, 1129;40–50. AISC.
  • D. Schiff, Ayesh A., Musikanski L, et al. IEEE 7010: a new standard for assessing the well-being implications of artificial intelligence. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Toronto, ON; 2020, p. 2746–2753. DOI: https://doi.org/10.1109/SMC42975.2020.9283454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.