3,127
Views
7
CrossRef citations to date
0
Altmetric
Articles

Two sides of the same coin: adaptation of BCIs to internal states with user-centered design and electrophysiological features

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 102-114 | Received 06 Sep 2021, Accepted 08 Feb 2022, Published online: 02 Mar 2022

References

  • World Health Organization, International Classification of Functioning, Disability and Health (Geneva: World Health Organization) 2001.
  • Andrich R, Mathiassen N-E, Hoogerwerf E-J, et al. Service delivery systems for assistive technology in Europe: an AAATE/EASTIN position paper. Technol Disabil. 2013;25(3):127–146.
  • Schettini F, Riccio A, Simione L, et al. Assistive Device With Conventional, Alternative, and Brain-Computer Interface Inputs to Enhance Interaction With the Environment for People With Amyotrophic Lateral Sclerosis: a Feasibility and Usability Study. Arch Phys Med Rehabil. 2015;96(3):S46–S53.
  • International Organization for Standardization. (2019 05/02/2022). Ergonomics of human-system interaction — part 210: human-centred design for interactive systems. Retrieved from https://www.iso.org/standard/77520.html
  • Riccio A, Simione L, Schettini F, et al. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci. 2013;7:732.
  • Riccio A, Holz EM, Aricò P, et al. Hybrid P300-Based Brain-Computer Interface to Improve Usability for People With Severe Motor Disability: electromyographic Signals for Error Correction During a Spelling Task. Arch Phys Med Rehabil. 2015;96(3):S54–S61.
  • Riccio A, Schettini F, Simione L, et al. On the relationship between attention processing and P300-based brain computer interface control in amyotrophic lateral sclerosis. Front Hum Neurosci. 2018;12:165.
  • Schreuder M, Riccio A, Risetti M, et al. User-centered design in brain–computer interfaces—A case study. Artif Intell Med. 2013;59(2):71–80.
  • Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage. Prog Brain Res. 2016;228:357–387.
  • Choi I, Rhiu I, Lee Y, et al. A systematic review of hybrid brain-computer interfaces: taxonomy and usability perspectives. PLOS ONE. 2017;12(4):e0176674.
  • Kübler A, Holz EM, Riccio A, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PloS One. 2014;9(12):e112392.
  • International Organization for Standardization. (2018 05/02/2022). Ergonomics of human-system interaction — part 11: usability: definitions and concepts. Retrieved from https://www.iso.org/standard/63500.html
  • Calhoun AJ, Pillow JW, Murthy M. Unsupervised identification of the internal states that shape natural behavior. Nat Neurosci. 2019;22(12):2040–2049.
  • Zander TO, Kothe C. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng. 2011;8(2):025005.
  • Myrden A, Chau T. Effects of user mental state on EEG-BCI performance. Front Hum Neurosci. 2015;9:308.
  • Xie J, Xu G, Wang J, et al. Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks: a comparison of periodic flickering and motion-reversal based visual attention. PloS One. 2016;11(9):e0163426.
  • Käthner I, Wriessnegger SC, Müller-Putz GR, et al. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol. 2014;102:118–129.
  • Kleih SC, Nijboer F, Halder S, et al. Motivation modulates the P300 amplitude during brain–computer interface use. Clin Neurophysiol. 2010;121(7):1023–1031.
  • Andreessen LM, Gerjets P, Meurers D, et al. Toward neuroadaptive support technologies for improving digital reading: a passive BCI-based assessment of mental workload imposed by text difficulty and presentation speed during reading. User Modeling and User-Adapted Interaction. 2021;31(1):75–104
  • Aricò P, Borghini G, Flumeri GD, et al. Passive BCI beyond the lab: current trends and future directions. Physiol Meas. 2018;39(8):08TR02.
  • Krol LR, Klaproth OW, and Vernaleken C, et al. Towards neuroadaptive modeling: assessing the cognitive states of pilots through passive brain-computer interfacing Fairclough, SH, and Zander, TO. In: Current Research in Neuroadaptive Technology. Cambridge, MA, US: Academic Press; 2022. p. 59–73.
  • Ziebell P, Stümpfig J, Eidel M, et al. Stimulus modality influences session-to-session transfer of training effects in auditory and tactile streaming-based P300 brain–computer interfaces. Sci Rep. 2020;10(1):11873.
  • Halder S, Juel BE, Nilsen AS, et al. Changes in measures of consciousness during anaesthesia of one hemisphere (Wada test). NeuroImage. 2021;226:117566.
  • Han Y, Valentini E, and Halder S Prediction of tonic pain using support vector machines with phase-based connectivity features 8th International BCI Meeting June Virtual Conference (Online) . 2021 BCI Society (Victoria, BC, Canada: BCI Society). p. 6.
  • Caruso M, Cincotti F, and Leotta F, et al. (2013). My-World-in-My-Tablet: an Architecture for People with Physical Impairment. Human-Computer Interaction 21-26, July, 2013 Las Vegas, NV, USA. Interaction Modalities and Techniques, 637–647. https://doi.org/10.1007/978-3-642-39330-3_69
  • Riccio A, Leotta F, Bianchi L, et al. Workload measurement in a communication application operated through a P300-based brain–computer interface. J Neural Eng. 2011;8(2):025028.
  • Zickler C, Riccio A, Leotta F, et al. A Brain-Computer Interface as Input Channel for a Standard Assistive Technology Software. Clin EEG Neurosci. 2011;42(4):236–244.
  • Riccio A, Schettini F, Galiotta V, et al. (Submitted) Usability of a hybrid system combining P3-based Brain-Computer Interface and commercial Assistive technologies to enhance communication in people with Multiple Sclerosis.
  • Geronimo A, Simmons Z, Schiff SJ. Performance predictors of brain–computer interfaces in patients with amyotrophic lateral sclerosis. J Neural Eng. 2016;13(2):026002.
  • Kleih SC, and Kübler A. Why user-centered design is relevant for brain–computer interfacing and how it can be implemented in study protocols Nam, CS, Nijholt, A, and Lotte, F. In: Brain–Computer Interfaces Handbook. New York, NY, US: CRC Press; 2018. p. 585–594.
  • Chavarriaga R, Fried-Oken M, Kleih S, et al. Heading for new shores! Overcoming pitfalls in BCI design. Brain-Comput Interfaces. 2017;4(1–2):60–73.
  • Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design. Front Hum Neurosci. 2013;7:568.
  • Mladenovic J. Standardization of protocol design for user training in EEG-based Brain-Computer Interface. J Neural Eng. 2020. https://doi.org/10.1088/1741-2552/abcc7d
  • Roc A, Pillette L, Mladenovic J, et al. A review of user training methods in brain computer interfaces based on mental tasks. J Neural Eng. 2021;18(1):011002.
  • Nijboer F, Furdea A, Gunst I, et al. An auditory brain–computer interface (BCI). J Neurosci Methods. 2008;167(1):43–50.
  • Rheinberg F, Vollmeyer R, Burns BD. QCM: a questionnaire to assess current motivation in learning situations. Diagnostica. 2001;47(2):57–66.
  • Kübler A, Nijboer F, and Kleih S. Chapter 26—Hearing the needs of clinical users. In: editors Ramsey NF, Del J, and Millán R. Handbook of Clinical Neurology. Oxford, UK: Elsevier; 2020. Vol. 168. 353–368.
  • Kübler A, Holz EM, Sellers EW, et al. Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users. Arch Phys Med Rehabil. 2015;96(3):S27–S32.
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–791.
  • Zickler C, Halder S, Kleih SC, et al. Brain Painting: usability testing according to the user-centered design in end users with severe motor paralysis. Artif Intell Med. 2013;59(2):99–110.
  • Botrel L, Holz EM, Kübler A. Brain Painting V2: evaluation of P300-based brain-computer interface for creative expression by an end-user following the user-centered design. Brain-Comput Interfaces. 2015;2(2–3):135–149.
  • Borsci S, Federici S, Lauriola M. On the dimensionality of the System Usability Scale: a test of alternative measurement models. Cogn Process. 2009;10(3):193–197.
  • Holz EM, Höhne J, Staiger-Sälzer P, et al. Brain–computer interface controlled gaming: evaluation of usability by severely motor restricted end-users. Artif Intell Med. 2013;59(2):111–120.
  • Rupp R, Kreilinger A, and Rohm M Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury 2021 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 28 August - 1 September, 2012, et al. In. IEEE; 2012. 1835–1838.
  • Holz EM, Botrel L, Kaufmann T, et al. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil. 2015a;96(3):S16–S26.
  • Holz EM, Botrel L, Kübler A. Independent home use of Brain Painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. Brain-Comput Interfaces. 2015b;2(2–3):117–134.
  • Vasilyev A, Liburkina S, Yakovlev L, et al. Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates. Neuropsychologia. 2017;97:56–65.
  • Lotte F, Renard Y, and Lécuyer A (2008 05/02/2022, September 19). Self-Paced Brain-Computer Interaction with Virtual Worlds: a Quantitative and Qualitative Study “Out of the Lab”. 4th international Brain Computer Interface Workshop and Training Course. https://hal.inria.fr/inria-00304340
  • Baykara E, Ruf CA, Fioravanti C, et al. Effects of training and motivation on auditory P300 brain–computer interface performance. Clin Neurophysiol. 2016;127(1):379–387.
  • Eidel M, Kübler A. Wheelchair Control in a Virtual Environment by Healthy Participants Using a P300-BCI Based on Tactile Stimulation: training Effects and Usability. Front Hum Neurosci. 2020;14:265.
  • Halder S, Käthner I, Kübler A. Training leads to increased auditory brain–computer interface performance of end-users with motor impairments. Clin Neurophysiol. 2016;127(2):1288–1296.
  • Herweg A, Gutzeit J, Kleih S, et al. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol. 2016;121:117–124.
  • Grier RA (2015). How High is High? A Meta-Analysis of NASA-TLX Global Workload Scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting Los Angeles, CA, US, 59( 1),1727–1731.
  • Hart SG. NASA-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2006;50(9):904–908.
  • Schultze-Kraft M, Dähne S, Gugler M, et al. Unsupervised classification of operator workload from brain signals. J Neural Eng. 2016;13(3):036008.
  • Borghini G, Astolfi L, Vecchiato G, et al. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev. 2014;44:58–75.
  • Dasari D, Shou G, Ding L. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task. Front Neurosci. 2017;11:297.
  • Yin Z, Zhang J. Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed Signal Process Control. 2017;33:30–47.
  • Yin Z, Zhao M, Wang Y, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput Methods Programs Biomed. 2017;140:93–110.
  • Martel A, Dähne S, Blankertz B. EEG predictors of covert vigilant attention. J Neural Eng. 2014;11(3):035009.
  • Llera A, van Gerven MAJ, Gómez V, et al. On the use of interaction error potentials for adaptive brain computer interfaces. Neural Networks. 2011;24(10):1120–1127.
  • Pinegger A, Faller J, Halder S, et al. Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach. J Neural Eng. 2015;12(1):014001.
  • Schartner M, Seth A, Noirhomme Q, et al. Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol Induced General Anaesthesia. PLOS ONE. 2015;10(8):e0133532.
  • Lempel A, Ziv J. On the Complexity of Finite Sequences. IEEE Trans Inf Theory. 1976;22(1):75–81.
  • Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152(3 Suppl):S49.
  • Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cogn Sci. 2017;21(2):100–110.
  • Baliki MN, Baria AT, Apkarian AV. The cortical rhythms of chronic back pain. J Neurosci. 2011;31(39):13981–13990.
  • de Tommaso M, Trotta G, Vecchio E, et al. Functional connectivity of EEG signals under laser stimulation in migraine. Front Hum Neurosci. 2015;9:640.
  • Nickel MM, May ES, Tiemann L, et al. Brain oscillations differentially encode noxious stimulus intensity and pain intensity. Neuroimage. 2017;148:141–147.
  • May ES, Nickel MM, Ta Dinh S, et al. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum Brain Mapp. 2019;40(1):293–305.
  • Lachaux J-P, Rodriguez E, Le Van Quyen M, et al. Studying single-trials of phase synchronous activity in the brain. Int J Bifurcation Chaos. 2000;10(10):2429–2439.
  • Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28(11):1178–1193.
  • Lehmann D, Faber PL, Gianotti LR, et al. Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. Journal of Physiology-Paris. 2006;99(1):29–36
  • Cohen MX. Analyzing neural time series data: theory and practice. Cambridge, MA, US: MIT press; 2014.
  • Furman AJ, Meeker TJ, Rietschel JC, et al. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. NeuroImage. 2018;167:203–210.
  • Nir -R-R, Sinai A, Raz E, et al. Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain Res. 2010;1344:77–86.
  • Valentini E, Halder S, McInnersey D, Cooke, J, Romei, V, et al. Assessing the specificity of the relationship between brain alpha oscillations and tonic pain. BioRxiv (Cold Spring Harbor, NY, US). 2019.
  • Yang W, Wang K, Zuo W. Neighborhood component feature selection for high-dimensional data. J Comput. 2012;7(1):161–168.
  • Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab. 2015;35(1):58–65.
  • Thibaut A, Bruno M-A, Chatelle C, et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med. 2012;44(6):487–494.
  • Tran Y, Craig A, Craig R, et al. The influence of mental fatigue on brain activity: evidence from a systematic review with meta‐analyses. Psychophysiology. 2020;57(5):e13554.
  • Demers L, Weiss-Lambrou R, Ska B. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): an overview and recent progress. Technol Disabil. 2002;14(3):101–105.
  • Zander TO, Andreessen LM, Berg A, et al. Evaluation of a dry EEG system for application of passive brain-computer interfaces in autonomous driving. Front Hum Neurosci. 2017;11:78.
  • Allison BZ, Kübler A, Jin J. 30+ years of P300 brain–computer interfaces. Psychophysiology. 2020;57(7):e13569.
  • Brooke, John. ”Sus: a ”quick and dirty” usability.” Usability evaluation in industry 189.3 (1996).
  • Bangor A, Kortum P, Miller J. Determining What Individual SUS Scores Mean: adding an Adjective Rating Scale. J Usability Stud. 2009;4(3):10.
  • Pasqualotto, E., Matuz, T., Federici, S., Ruf, C. A., Bartl, M., Olivetti Belardinelli, M., Birbaumer, N., & Halder, S. (2015). Usability and Workload of Access Technology for People With Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking. Neurorehabilitation and Neural Repair, 29(10), 950–957.
  • Simon, N., Käthner, I., Ruf, C. A., Pasqualotto, E., Kübler, A., & Halder, S. (2015). An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user. Frontiers in Human Neuroscience, 8, 1039.
  • Chu C, Luo J, Tian X, et al. A P300 Brain-Computer Interface Paradigm Based on Electric and Vibration Simple Command Tactile Stimulation. Front Hum Neurosci. 2021;15:641357.
  • Eidel M, Troger W, and Winterholler M, et al. (2021). A Tactile Brain-Computer Interface for Virtual Wheelchair Control at Home. 2021 9th International Winter Conference on Brain-Computer Interface (BCI) Gangwon, South Korea, 92–94. https://doi.org/10.1109/BCI51272.2021.9385341
  • Halder S, Takano K, Kansaku K. Comparison of Four Control Methods for a Five-Choice Assistive Technology. Front Hum Neurosci. 2018;12:228.
  • Ortner R, Dinarès-Ferran J, and Irimia D-C, et al. Towards Improved Vibro-Tactile P300 BCIs. In: Kurosu M, Editors. Human-Computer Interaction. Interaction Techniques and Novel Applications. New York City, US: Springer International Publishing; 2021. p. 65–74. https://doi.org/10.1007/978-3-030-78465-2_6.
  • Hammer EM, Halder S, Kleih SC, et al. Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance. Front Neurosci. 2018;12:307.
  • Jeunet C, Jahanpour E, Lotte F. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study. J Neural Eng. 2016;13(3):036024.
  • Kleih Dahms SC, Botrel L, Kübler A. The influence of motivation and emotion on sensorimotor rhythm‐based brain–computer interface performance. Psychophysiology. 2021;58(8):e13832.
  • Pillette L, Jeunet C, Mansencal B, et al. A physical learning companion for Mental-Imagery BCI User Training. Inter J Human Comp Stud. 2020;136:102380.
  • Mladenović J, Frey J, and Mattout J, et al. (2021). Biased feedback influences learning of Motor Imagery BCI 8th International BCI Meeting June Virtual Conference (Online).https://hal.inria.fr/hal-02902542 Accessed 05 02 2022
  • Mladenovic J, Frey J, Pramij S, et al. Towards identifying optimal biased feedback for various user states and traits in motor imagery BCI. IEEE Trans Biomed Eng. 2021;1. https://doi.org/10.1109/TBME.2021.3113854
  • Antle AN, Chesick L, Mclaren E-S. Opening up the Design Space of Neurofeedback Brain—Computer Interfaces for Children. ACM Transactions on Computer-Human Interaction. 2018;24(6):1–33.
  • Kinney-Lang E, Kelly D, Floreani ED, et al. Advancing Brain-Computer Interface Applications for Severely Disabled Children Through a Multidisciplinary National Network: summary of the Inaugural Pediatric BCI Canada Meeting. Front Hum Neurosci. 2020;14:593883.
  • Orlandi S, House SC, Karlsson P, et al. Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: a Systematic Review. Front Hum Neurosci. 2021;15:643294.
  • Kaplan AY, Shishkin SL, Ganin IP, et al. Adapting the P300-based brain–computer interface for gaming: a review. IEEE Transactions on Computational Intelligence and AI in Games. 2013;5(2):141–149
  • Kober SE, Ninaus M, and Friedrich EV, et al. BCI and games: playful, experience-oriented learning by vivid feedback? Nam, CS, Nijholt, A, and Lotte, F In: Brain–Computer Interfaces Handbook. Boca Raton, FL, US: CRC Press; 2018. p. 209–234.
  • Vasiljevic GAM, de Miranda LC. Brain–computer interface games based on consumer-grade EEG Devices: a systematic literature review. Int J Hum Comput Interact. 2020;36(2):105–142.
  • Rosenberg MD, Finn ES, Scheinost D, et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci. 2016;19(1):165–171.
  • Borhani S, Abiri R, Jiang Y, et al. Brain connectivity evaluation during selective attention using EEG-based brain-computer interface. Brain-Comput Interfaces. 2019;6(1–2):25–35.
  • Dimitrakopoulos GN, Kakkos I, Dai Z, et al. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans Neural Syst Rehabil Eng. 2018;26(4):740–749
  • Dimitriadis SI, Sun Y, and Kwok K, et al. (2013). A tensorial approach to access cognitive workload related to mental arithmetic from EEG functional connectivity estimates. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Osaka, Japan, 2940–2943.
  • Schutter DJ, Knyazev GG. Cross-frequency coupling of brain oscillations in studying motivation and emotion. Motivation Emotion. 2012;36(1):46–54.
  • Dimitriadis SI, Sun YU, Kwok K, et al. Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Ann Biomed Eng. 2015;43(4):977–989.
  • Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions Inf Technol Biomed. 2007;11(3):288–295
  • Inouye T, Shinosaki K, Sakamoto H, et al. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol. 1991;79(3):204–210.
  • Sitges C, Bornas X, Llabrés J, et al. Linear and nonlinear analyses of EEG dynamics during non-painful somatosensory processing in chronic pain patients. Int J Psychophysiol. 2010;77(2):176–183.
  • Krol LR, and Zander TO Passive BCI-based Neuroadaptive Systems 7th Graz Brain-Computer Interface Conference September Graz, Austria . Graz, Austria: Graz University of Technology; 2017 Müller-Putz, G, Steyrl, D, Wriessnegger, SC, and Scherer, R.
  • Müller K-R, Tangermann M, Dornhege G, et al. Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. J Neurosci Methods. 2008;167(1):82–90.
  • Luu TP, He Y, Brown S, et al. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar. J Neural Eng. 2016;13(3):036006.
  • Spicer R, Anglin J, Krum DM et al. REINVENT: A low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery 2017 IEEE Virtual Reality (VR) Los Angeles, CA, US IEEE. 2017. p. 385–386.
  • Hughes C, Herrera A, and Gaunt R, et al. Chapter 13—Bidirectional brain-computer interfaces. In: editors Ramsey NF, Del J, and Millán R. Handbook of Clinical Neurology. Amsterdam, Netherlands: Elsevier; 2020. Vol. 168. 163–181.