427
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electroencephalogram-based cognitive load level classification using wavelet decomposition and support vector machine

, &
Pages 1-15 | Received 07 May 2022, Accepted 02 Aug 2022, Published online: 08 Aug 2022

References

  • Sweller J. The role of evolutionary psychology in our understanding of human cognition: consequences for cognitive load theory and instructional procedures. Educ Psychol Rev. 2021. DOI:10.1007/s10648-021-09647-0
  • Sweller J, van Merriënboer JJG, Paas F. Cognitive architecture and instructional design: 20 years later. Educ Psychol Rev. 2019;31(2):261–292.
  • Paas F, Tuovinen JE, Tabbers H, et al. Cognitive load measurement as a means to advance cognitive load theory. Educ Psychologist. 2003;38(1):63–71.
  • Skulmowski A, D G. Rey measuring cognitive load in embodied learning settings. Front Psychol. 2017;8(1191). DOI:10.3389/fpsyg.2017.01191
  • Skulmowski A, Xu KM. Understanding cognitive load in digital and online learning: a new perspective on extraneous cognitive load. Educ Psychol Rev. 2022;34(1):171–196.
  • Sun Y, Ayaz H, Akansu AN. Multimodal affective state assessment using fNIRS + EEG and spontaneous facial expression. Brain Sci. 2020;10(2):85.
  • Babu AR, Rajavenkatanarayanan A, and Brady JR, et al., “Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal,” in Proc. of the Workshop on Modeling Cognitive Processes from Multimodal Data (MCPMD), Boulder, Colorado, USA. no. 14, pp. 1–7, 2018. doi: 10.1145/3279810.3279849
  • Zhang L, Wade J, Bian D, et al., “Multimodal fusion for cognitive load measurement in an adaptive virtual reality driving task for Autism intervention,” in Proc. Int. Conf. on Universal Access in Human-Computer Interaction (UAHCI), USA: Springer, Cham, vol. 9177, 2015.
  • Liao PC, Sun X, Zhang D. A multimodal study to measure the cognitive demands of hazard recognition in construction workplaces. Saf Sci. 2021;133(105010):105010.
  • Aghajani H, Garbey M, Omurtag A. Measuring mental workload with EEG+fNIRS. Front Hum Neurosci. 2017;11(359). DOI:10.3389/fnhum.2017.00359
  • Cabañero L, Hervás R, and González I, et al., “Analysis of cognitive load using EEG when interacting with mobile devices,” in Proc. 13th Int. Conf. on Ubiquitous Computing and Ambient Intelligence (UCAmI), Toledo, Spain. vol. 31, no. 1, pp. 70, 2019.
  • Sisakhti M, Sachdev PS, Batouli SAH. The effect of cognitive load on the retrieval of long-term memory: an fMRI study. Front Hum Neurosci. 2021;15(700146). DOI:10.3389/fnhum.2021.700146
  • Rahman MA, Khanam F, and Kazem M, et al., Four-class motor imagery EEG signal classification using PCA, wavelet and two-stage neural network. Int J Adv Comput Sci Appl. 2019;10(5):481-490.
  • Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012;12(2):1211–1279. (Basel, Switzerland).
  • Friedman N, Fekete T, Gal K, et al. EEG-based prediction of cognitive load in intelligence tests. Front Hum Neurosci. 2019;13(191). DOI:10.3389/fnhum.2019.00191
  • Mills C, Fridman I, and Soussou W, et al., Put your thinking cap on detecting cognitive load using EEG during learning,” in Proceedings of the Seventh International Learning Analytics & Knowledge Conference, Association for Computing Machinery, USA, Vancouver, British Columbia, Canada. pp. 80–89, 2017. doi: 10.1145/3027385.3027431
  • Rahman MA, Hossain MF, Hossain M, et al. Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egypt Inf J. 2020;21(1):23–35.
  • Kavasidis I, Pino C, and Spampinato C, et al., “Performance evaluation of classifiers in distinguishing mental tasks from EEG signals,” Proceedings of the 9th IASTED International Conference on Biomedical Engineering, BioMed-2012, Innsbruck, Austria. pp. 171–177, 2012. doi: 10.2316/P.2012.764-167
  • Kumar N, Kumar J. Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput Sci. 2016;84:70–78.
  • Dan A, Reiner M. Real time EEG based measurements of cognitive load indicates mental states during learning. J Educ Data Mining. 2017;9(2):31–44.
  • McDonald NJ, Soussou W. Quasar’s qstates cognitive gauge performance in the cognitive state assessment competition 2011. in Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE (Boston, MA: IEEE), pp. 6542–6546, 2011.
  • Conrad CD, Bliemel M. Psychophysiological measures of cognitive absorption and cognitive load in E-learning applications. in Proceedings of the 37th International Conference on Information Systems, Agerfalk P, Levina N, Kien SS, (Eds.), Dublin, 2016.
  • Mazher M, Abd Aziz A, Malik AS, et al. An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence. IEEE Access. 2017;5:14819–14829.
  • Yang Y, Feng Y, Easa SM, et al. Evaluation of mental load of drivers in long highway tunnel based on electroencephalograph. Front Psychol. 2021;12(646406). DOI:10.3389/fpsyg.2021.646406
  • Zhou Y, Xu T, and Cai Y, et al. Monitoring cognitive workload in online videos learning through an EEG-based brain-computer interface. In: Zaphiris P, Ioannou A, editors. Lecture Notes in Computer Science. Cham: Springer; 2017. p. 64–73.
  • Khanam F, Hossain ABMA, Ahmad M. Statistical valuation of cognitive load level hemodynamics from functional near-infrared spectroscopy signals. Neurosci Inf. 2022;2(3):100042.
  • Rahman MA, Khanam F, Ahmad M, et al. Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation. Brain Inform. 2020;7(7). DOI:10.1186/s40708-020-00108-y
  • Khushaba RN, Kodagoda S, Lal S, et al. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans Biomed Eng. 2011;58(1):121–131.
  • Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl. 2011;38(10):13475–13481.
  • Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352–358.
  • Shin J, von Lühmann A, Kim DW, et al. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci Data. 2018;5(1). DOI:10.1038/sdata.2018.3
  • Shin J, von Lühmann, A, and Kim, DW, et al. Technische Universität. Berlin, 2016. 10.14279/depositonce-5830.2
  • Gajewski PD, Hanisch E, Falkenstein M, et al. What does the n-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Front Psychol. 2018;9(2208). DOI:10.3389/fpsyg.2018.02208
  • World medical association declaration of Helsinki-ethical principles for medical research involving human subjects. In: Adopted by 64th WMA general assembly. Fortaleza, Brazil, Special Communication: Clinical Review & Education; 2013.
  • Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112(4):713–719.
  • Blankertz B, Tangermann M, Vidaurre C, et al. The Berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci. 2010;4(198). DOI:10.3389/fnins.2010.00198
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.
  • Herrero GG, Clercq WD, Anwar H, et al., “Automatic removal of ocular artifacts in the EEG without an EOG reference channel,” in Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006, pp. 130–133, 2006. doi: 10.1109/NORSIG.2006.275210
  • Blankertz B, Lemm S, Treder M, et al. Single-trial analysis and classification of ERP components—a tutorial. Neuroimage. 2011;56(2):814–825.
  • Lemm S, Blankertz B, Dickhaus T, et al. Introduction to machine learning for brain imaging. Neuroimage. 2011;56(2):387–399.
  • Tomioka R, Müller KR. A regularized discriminative framework for EEG analysis with application to brain-computer interface. Neuroimage. 2010;49(1):415–432.
  • Dornhege G, Blankertz B, and Curio G, et al. Advances in neural information processing systems. Cambridge, USA: MIT Press; 2004. p. 733–740.
  • Tichavsky P, Yeredor A, and Nielsen J. A fast approximate joint diagonalization algorithm using a criterion with a block diagonal weight matrix. in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA. pp. 3321–3324, 2008.
  • Ziehe A, and Müller KR. TDSEP- an efficient algorithm for blind separation using time structure. in Proceedings of 8th ICANN Perspectives in Neural Computing, pp. 675–680; London: Springer;1998.
  • Subha DP, Joseph PK, Acharya U R, et al. EEG signal analysis: a survey. J Med Syst. 2010;34(2):195–212.
  • Proch´azka A, Kukal J, and Vyˇsata O. Wavelet transform use for feature extraction and EEG signal segments classification. 3rd International Symposium on Communications, Control and Signal Processing, Saint Julian's, Malta; pp. 719–722, 2008. doi: 10.1109/ISCCSP.2008.4537317.
  • Aguiñaga AR, López Ramírez MA, Flores MDRB. Classification model of arousal and valence mental states by EEG signals analysis and Brodmann correlations. Int J Adv Comput Sci Appl. 2015;6(6). DOI:10.14569/IJACSA.2015.060633
  • Cheong LC, Sudirman R, Hussin SS. Feature extraction of EEG signal using wavelet transform for autism classification. ARPN J Eng Appl Sci. 2015;10(19):8533–8540.
  • Hosseinzadeh M. Chapter 4 - Robust control applications in biomedical engineering: control of depth of hypnosis. Azar AT editor, Control applications for biomedical engineering systems 1st; Amsterdam, Netherlands: Academic Press. 2020. 89–125. doi:10.1016/B978-0-12-817461-6.00004-4
  • Rahman MA, Rashid MO, Khanam F, et al. EEG based brain alertness monitoring by statistical and artificial neural network approach. Int J Adv Comput Sci Appl (IJACSA). 2019;10(1):431–442.
  • Wali MK, Murugappan M, Ahmmad B. Wavelet packet transform based driver distraction level classification using EEG. Math Prob Eng. 2013;2013:10. Article ID 297587.
  • Rahman MA, Rashid MA, Ahmad M, et al. Activation modeling and classification of voluntary and imagery movements from the prefrontal fNIRS signals. IEEE Access. 2020;8:218215–218233.
  • Shi M, Wang C, Li XZ, et al. EEG signal classification based on SVM with improved squirrel search algorithm. J Biomed Eng/Biomed Techn. 2021;66(2):137–152.
  • Barua S, Ahmed MU, Begum S. Classifying drivers’ cognitive load using EEG signals. Stud Health Technol Inform. 2017;237:99–106.
  • Zhongxiang D, Anastasios B, Annabel CSH, et al. Mental workload classification in n-back tasks based on single trial EEG. Chin J Sci Instrum. 2017;38(6):1335–1344.
  • Wang S, Gwizdka J, Chaovalitwongse WA. Using wireless EEG signals to assess memory workload in the n-back task</inline-formula>. IEEE Trans Human-Mach Syst. 2016;46(3):424–435.
  • Kutafina E, Heiligers A, Popovic R, et al. Tracking of MENTALWORKLOAD with a mobile EEG sensor. Sensors. 2021;21(15):5205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.