389
Views
1
CrossRef citations to date
0
Altmetric
Articles

Examination of effectiveness of kinaesthetic haptic feedback for motor imagery-based brain-computer interface training

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 16-37 | Received 12 May 2020, Accepted 12 Aug 2022, Published online: 01 Sep 2022

References

  • Besio S, Dini S, Robins B (2007). Critical factors involved in using interactive robots for play activities of children with disabilities. Paper presented at the Challenges for Assistive Technology.
  • Ferland F. Le modèle ludique. Montreal: Les presses de l'Université de Montréal; 2003.
  • Blanche EI. Play in Children with Cerebral Palsy: Doing With—Not Doing To. Play in Occupational Therapy for Children, 2nd ed. Maryland Heights, MO: Mosby; 2008. p. 375–393.
  • Robins B, Dautenhahn K, Ferrari E, et al. Scenarios of robot-assisted play for children with cognitive and physical disabilities. Interac Studies. 2012;13(2):189–234.
  • Rios RAM. Playfulness in children with severe cerebral palsy when using a robot. Edmonton, AB, Canada: University of Alberta; 2014.
  • Kronreif G, Prazak B, Kornfeld M, et al. (2007). Robot Assistant “PlayROB”-User Trials and Results. Paper presented at the 16th IEEE International Conference on Robot and Human Interactive Communication, Jeju, Korea.
  • Van den Heuvel RJF, Lexis MAS, Gelderblom GJ, et al. Robots and ICT to support play in children with severe physical disabilities: a systematic review. Disability & Rehabilitation: Assistive Tech. 2016;11(2):103–116 114.
  • Collinger JL, Wodlinger B, Downey JE, et al. Articles: high-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–564.
  • McFarland DJ, Wolpaw JR. Brain-Computer Interfaces for Communication and Control. Commun ACM. 2011;54(5):60–66.
  • Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. New York: Oxford University Press; 2006.
  • Encarnação P, Leite T, Nunes C, et al. Using assistive robots to promote inclusive education. Disab & Rehabi Tech. 2017;12(4):352–372.
  • Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979;46(2):138–146.
  • Pfurtscheller G, Neuper C. Dynamics of Sensorimotor Oscillations in a Motor Task. In: Graimann B, Pfurtscheller G, Allison B, editors. Brain-computer interfaces: revolutionizing human-computer interaction. Berlin Heidelberg: Springer; 2010. p. 47–64.
  • Tan DS, Nijholt A. Brain-computer interfaces: applying our minds to human-computer interaction. London: Springer; 2010.
  • Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: revolutionizing human-computer interaction. Heidelberg; New York: Springer-Verlag; 2010.
  • Jeunet C, Jahanpour E, Lotte F. Why Standard Brain-Computer Interface (BCI) training protocols should be changed: an experimental study. J of Neural Eng. 2016;13(3). DOI: 10.1088/1741-2560/13/3/036024.
  • Cincotti F, Mattia D, Aloise F, et al. Research report: non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res Bull. 2008;75(6):796–803.
  • Daly I, Faller J, Scherer R, et al. Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control. Front Neuroeng. 2014;7:20.
  • López-Larraz E, Montesano L, Gil-Agudo Á, et al. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J NeuroEng & Rehab. 2014;11(1):1–28.
  • Kinney-Lang E, Auyeung B, Escudero J. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children. J Neural Eng. 2016;13(6):061002.
  • Mikołajewska E, Mikołajewski D. The prospects of brain — computer interface applications in children. Cen Eur J Med. 2014;9(1):74–79.
  • Orlandi S, House SC, Karlsson P, et al. Brain-computer interfaces for children with complex communication needs and limited mobility: a systematic review. Front Hum Neurosci. 2021;15:643294.
  • Berchicci M, Zhang T, Romero L, et al. Development of mu rhythm in infants and preschool children. Vol. 33. Basel, Switzerland: S. Karger AG; 2011. p. 130–143.
  • Lee NG, Kang SK, Lee DR, et al. Feasibility and test-retest reliability of an electroencephalography-based brain mapping system in children with cerebral palsy: a preliminary investigation. Arch Phys Med Rehabil. 2012;93(5):882–888 887.
  • Taherian S, Selitskiy D, Pau J, et al. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy. Disabil Rehabil Assist Technol. 2017;12(2):165–174.
  • Zhang J, Jadavji Z, Zewdie E, et al. Evaluating if children can use simple brain computer Interfaces. Front Hum Neurosci. 2019;13:24.
  • Lukoyanov M, Gordleeva SY, Pimashkin AS, et al. The efficiency of the brain-computer interfaces based on motor imagery with tactile and visual feedback. Human Physiol. 2018;44(3):280–288.
  • Sigrist R, Rauter G, Riener R, et al. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20(1):21–53.
  • Ishihara W, Moxon K, Ehrman S, et al. (2020). Feedback modalities in brain–computer interfaces: a systematic review. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64, 1186–1190.
  • Murguialday AR, Aggarwal V, Chatterjee A, et al. (2007 ()). Brain-computer interface for a prosthetic hand using local machine control and haptic feedback. 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, Netherlands, 609–613.
  • Jeunet C, Vi C, Spelmezan D, et al. Continuous tactile feedback for motor-imagery based brain-computer interaction in a multitasking context. Cham: Springer; 2015.
  • Angulo-Sherman IN, Gutiérrez D (2014 ()). Effect of different feedback modalities in the performance of brain-computer interfaces. Paper presented at the 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP) Cholula, Puebla, Mexico.
  • Fleury M, Lioi G, Barillot C, et al. A survey on the use of haptic feedback for brain-computer interfaces and neurofeedback. Front Neurosci. 2020;14. DOI:10.3389/fnins.2020.00528.
  • Pfurtscheller G, Guger C, Müller G, et al. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett. 2000;292(3):211–214.
  • Ang KK, Guan C, Chua KSG, et al. (2009). A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Conference Proceedings: … Annual International Conference Of The IEEE Engineering In Medicine And Biology Society. IEEE Engineering In Medicine And Biology Society. Annual Conference Minneapolis, MN, USA, 5981–5984. 10.1109/IEMBS.2009.5335381
  • Gomez-Rodriguez M, Peters J, Hill J, et al. (2010). Closing the sensorimotor loop: haptic feedback facilitates decoding of arm movement imagery. Paper presented at the 2010 IEEE International Conference on Systems, Man and Cybernetics Istanbul, Turkey.
  • Vukelić M, Gharabaghi A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage. 2015;111:1–11.
  • Higginbotham DJ. Use of nondisabled subjects in AAC research: confessions of a research infidel. AAC Augm Alt comm. 1995;11(1):2–5
  • McNaughton D, Light J. What we write about when we write about aac: the past 30 years of research and future directions. Augm Alter Comm. 2015;31(4):261–270.
  • MIYAKE, S Mental workload assessment and analysis -a reconsideration of the NASA-TLX The Japanese Journal of Ergonomics. 2015;51(6):91–398.
  • Renard Y, Lotte F, Gibert G, et al. OpenViBE: an open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence. 2010;19(1):35–53.
  • Christoph G, Günter E. The First Commercial Brain–Computer Interface Environment. Berlin Heidelberg: Springer; 2010. p. 281.
  • Shiman F, Irastorza-Landa N, Sarasola-Sanz A, et al. (2015). Towards decoding of functional movements from the same limb using EEG. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society, Milan, Italy. doi:10.1109/EMBC.2015.7318759
  • Pfurtscheller G, Neuper C, Guger C, et al. Current trends in Graz Brain-Computer Interface (BCI) research. IEEE Trans Rehabil Eng. 2000;8(2):216–219.
  • Koles ZJ, Lazar MS, Zhou SZ. Spatial patterns underlying population differences in the background EEG. Brain Topogr. 1990;2(4):275–284.
  • Romero-Laiseca MA, Sakamaki I, Adams K, et al. (2019). An overview about classifiers for open source brain-computer interface based on motor imagery Paper presented at the 2nd International Workshop on Assistive Technology Vitoria, Brazil VITORIA.
  • Abu-Rmileh A, Zakkay E, Shmuelof L, et al. Co-adaptive training improves efficacy of a multi-day EEG-based motor imagery BCI training. Front Hum Neurosci. 2019;13(362). DOI:10.3389/fnhum.2019.00362
  • Vidaurre C, Sannelli C, Müller KR, et al. Co-adaptive calibration to improve BCI efficiency. J Neural Eng. 2011;8(2):025009.
  • Miyake S. Special issues no. 3: measurement technique for ergonomics, section 3. Psych Meas Ana. 2015;6.
  • Hart SG, Staveland LE. Development of NASA-TLX (Task load index): results of empirical and theoretical research. Adv Psychol. 1988;52:139–183.
  • Stastný J, Kostilek M, Sovka P. Overcoming inter-subject variability in BCI Using EEG-based identification. Zootaxa. 2014;3795:25–37.
  • Yao L, Sheng X, Zhang D, et al. A BCI SYSTEM BASED ON SOMATOSENSORY ATTENTIONAL ORIEntation. IEEE Trans Neural Syst Rehabil Eng. 2017;25(1):78–87.
  • Atyabi A, Fitzgibbon SP, Powers DMW. Multiplication of EEG Samples through Replicating, Biasing, and Overlapping International Conference on Brain Informatics. Macau, China. Berlin Heidelberg: Springer; 2012;7670.
  • Palisano R, Rosenbaum P, Bartlett D, et al. Gross motor function classification system expanded and revised. Hamilton, ON, Canada: CanChild Center for Childhood Disability Research, McMaster University; 2007. https://www.canchild.ca.
  • Eliasson AC, Krumlinde-Sundholm L, Rösblad B, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–554.
  • Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14(11):e0224365.
  • Neuper C, Pfurtscheller G. Neurofeedback Training for BCI Control. In: Graimann B, Pfurtscheller G, Allison B, editors. Brain-Computer interfaces: revolutionizing human-computer interaction. Berlin Heidelberg: Springer; 2010. p. 65–78.
  • Pfurtscheller G, Neuper C, Guger C, et al. Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Neural Syst Rehabil Eng. 2000;8(2):216–219.
  • Huang D, Lin P, Fei D-Y, et al. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. J Neural Eng. 2009;6(4):46005.
  • Rakusa M, Hribar A, Koritnik B, et al. Assessment of the haptic robot as a new tool for the study of the neural control of reaching. Neurol Sci. 2013;34(10):1779–1790.
  • Solis-Escalante T, Müller-Putz G, Brunner C, et al. Analysis of sensorimotor rhythms for the implementation of a brain switch for healthy subjects. Biomed Signal Process Control. 2010;5(1):15–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.