527
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Large scale investigation of the effect of gender on mu rhythm suppression in motor imagery brain-computer interfaces

, , , , , & ORCID Icon show all
Received 05 Apr 2023, Accepted 16 Apr 2024, Published online: 04 May 2024

References

  • Pfurtscheller G, da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–1857. doi: 10.1016/S1388-2457(99)00141-8
  • Singh A, Hussain AA, Lal S, et al. A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors. 2021a;21(6):2173. doi: 10.3390/s21062173
  • Penaloza CI, Alimardani M, Nishio S. Android feedback-based training modulates sensorimotor rhythms during motor imagery. IEEE Trans Neural Syst Rehabil Eng. 2018;26(3):666–674. doi: 10.1109/TNSRE.2018.2792481
  • Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006;31(1):153–159. doi: 10.1016/j.neuroimage.2005.12.003
  • Benzy VK, Vinod AP, Subasree R, et al. Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):3051–3062. doi: 10.1109/TNSRE.2020.3039331
  • Alimardani M, Gherman DE. Individual differences in motor imagery BCIs: a study of gender, mental states and Mu suppression. In: 2022 10th International Winter Conference on Brain-Computer Interface (BCI); 2022 February; Gangwon, South Korea. IEEE. p. 1–7.
  • Thompson MC. Critique the concept of BCI illiteracy. Sci Eng Ethics. 2019;25(4):1217–1233. doi: 10.1007/s11948-018-0061-1
  • Zhang R, Li F, Zhang T, et al. Subject inefficiency phenomenon of motor imagery brain-computer interface: influence factors and potential solutions. Brain Sci Adv. 2020;6(3):224–241. doi: 10.26599/BSA.2020.9050021
  • Allison BZ, Neuper C. Could anyone use a BCI? In: Tan D Nijholt A, editors. Brain-Computer Interfaces. Human-computer interaction series. London: Springer; 2010. DOI:10.1007/978-1-84996-272-8_3
  • Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage. 2010;51(4):1303–1309. doi: 10.1016/j.neuroimage.2010.03.022
  • Guger C, Edlinger G, Harkam W, et al. How many people are able to operate an EEG-based Brain-Computer Interface (BCI)? IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):145–147. doi: 10.1109/TNSRE.2003.814481
  • Lee MH, Kwon OY, Kim YJ, et al. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience. 2019;8(5):giz002. doi: 10.1093/gigascience/giz002
  • Jeunet C, N’Kaoua B, Subramanian S, et al. Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PLoS One. 2015;10(12):e0143962. doi: 10.1371/journal.pone.0143962
  • Leeuwis N, Paas A, Alimardani M. Vividness of visual imagery and personality impact motor-imagery brain-computer interfaces. Front Human Neurosci. 2021a;15. doi: 10.3389/fnhum.2021.634748
  • Hagedorn LJ, Leeuwis N, Alimardani M. Prediction of inefficient BCI users based on cognitive skills and personality traits. In: International Conference on Neural Information Processing s.l.:Springer; 2021. p. 81–89.
  • Grosse-Wentrup M, Schölkopf B. A review of performance variations in SMR-based Brain− Computer interfaces (BCIs). In: Christoph G, Brendan ZA, Günter E, editors. Brain-Computer Interface Research: A State-of-the-Art Summary. 2013. p. 39–51. https://link.springer.com/book/10.1007/978-3-642-36083-1
  • Ahn M, Jun SC. Performance variation in motor imagery brain–computer interface: a brief review. J Neurosci Methods. 2015;243:103–110. doi: 10.1016/j.jneumeth.2015.01.033
  • Tzdaka E, Benaroch C, Jeunet C, et al. Assessing the relevance of neurophysiological patterns to predict motor imagery-based BCI users’ performance. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2020 October; Toronto, Ontario, Canada. IEEE. p. 2490–2495.
  • Leeuwis N, Yoon S, Alimardani M. Functional connectivity analysis in motor imagery brain computer interfaces. Front Human Neurosci. 2021c;15:564. doi: 10.3389/fnhum.2021.732946
  • Myrden A Chau T. Effects of user mental state on EEG-BCI performance. Front Human Neur. 2015;9:308.
  • Mladenović J, Frey J, Pramij S, et al. Towards identifying optimal biased feedback for various user states and traits in motor imagery BCI. IEEE Trans Biomed Eng. 2022a;69(3):1101–1110. doi: 10.1109/TBME.2021.3113854
  • Rimbert S, Zaepffel M, Riff P, et al. Hypnotic state modulates sensorimotor beta rhythms during real movement and motor imagery. Front psychol. 2019b;10:2341. doi: 10.3389/fpsyg.2019.02341
  • Jeunet C, N’Kaoua B, Lotte F. Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. Prog Brain Res. 2016;228:3–35.
  • Leeuwis N, Alimardani M. High aptitude motor-imagery BCI users have better visuospatial memory. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); s.l.:s.n; 2020. p. 1518–1523.
  • Hammer EM, Kaufmann T, Kleih SC, et al. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by Modulation of Sensorimotor Rhythms (SMR). Front Human Neurosci. 2014;8:574. doi: 10.3389/fnhum.2014.00574
  • Rimbert S, Gayraud N, Bougrain L, et al. Can a subjective questionnaire be used as brain-computer interface performance predictor? Front Hum Neurosci. 2019a;12:529. doi: 10.3389/fnhum.2018.00529
  • Rimbert S, Lotte F. ERD modulations during motor imageries relate to users’ traits and BCI performances. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); 2022 July; Glasgow, Scotland, United Kingdom. IEEE. p. 203–207.
  • Randolph AB. Not all created equal: individual-technology fit of brain-computer interfaces. In: 2012 45th Hawaii International Conference on System Sciences; s.l.:IEEE; 2012. p. 572–578.
  • Cantillo-Negrete J, Gutierrez-Martinez J, Carino-Escobar RI, et al. An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender. Biomed Eng Online. 2014;13(1):1–15. doi: 10.1186/1475-925X-13-158
  • Zapała D, Zabielska-Mendyk E, Augustynowicz P, et al. The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery BCI control. Sci Rep. 2020;10(1):2087.
  • Pillette L, Roc A, N’Kaoua B, et al. Experimenters’ influence on mental-imagery based brain-computer interface user training. Inter J Human Comp Stud. 2021;149:102603. doi: 10.1016/j.ijhcs.2021.102603
  • Mladenović J, Lotte F, Mattout J, et al. Simple probabilistic data-driven model for adaptive BCI feedback. In: Neuroadaptive Technologies, NAT’22; Lubenaü, Germany.
  • Catrambone V, Greco A, Averta G, et al. Predicting object-mediated gestures from brain activity: an EEG study on gender differences. IEEE Trans Neural Syst Rehabil Eng. 2019;27(3):411–418. doi: 10.1109/TNSRE.2019.2898469
  • Elsayed NE, Tolba AS, Rashad MZ, et al. A deep learning approach for brain computer interaction-motor execution EEG signal classification. IEEE Access. 2021;9:101513–101529. doi: 10.1109/ACCESS.2021.3097797
  • Chen YY, Lambert KJ, Madan CR, et al. Mu oscillations and motor imagery performance: a reflection of intra-individual success, not inter-individual ability. Hum Mov Sci. 2021;78:102819. doi: 10.1016/j.humov.2021.102819
  • Pfurscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proc IEEE. 2001;89(7):1123–1134. doi: 10.1109/5.939829
  • Leeuwis N, Paas A, Alimardani M. Psychological and cognitive factors in motor imagery brain computer interfaces. DataverseNL; 2021b. 10.34894/Z7ZVOD. doi: 10.34894/Z7ZVOD
  • Cho H, Ahn M, Ahn S, et al. EEG datasets for motor imagery brain–computer interface. GigaSci Database. 2017;6(7). doi: 10.1093/gigascience/gix034
  • Dreyer P, Roc A, Pillette L, et al. A large EEG database with users’ profile information for motor imagery brain-computer interface research. Sci Data. 2023;10(1):580. doi: 10.1038/s41597-023-02445-z
  • Benaroch C, Yamamoto MS, Roc A, et al. When should MI-BCI feature optimization include prior knowledge, and which one? Brain-Computer Interfaces. 2022;9(2):115–128. doi: 10.1080/2326263X.2022.2033073
  • Jäncke L. Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000 Res. 2018;7.
  • Joel D, Fausto-Sterling A. Beyond sex differences: new approaches for thinking about variation in brain structure and function. Phil Tran Roy Soc B: Bio Sci. 2016;371(1688):20150451.
  • Kim TK, Park JH. More about the basic assumptions of t-test: normality and sample size. Korean J Anesth. 2019;72(4):331–335. doi: 10.4097/kja.d.18.00292
  • Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesth. 2017;70(2):144–156. doi: 10.4097/kjae.2017.70.2.144
  • Lotte F, Jeunet C. Defining and quantifying users’ mental imagery-based BCI skills: a first step. J Neural Eng. 2018;15(4):046030. doi: 10.1088/1741-2552/aac577
  • Wood G, Kober SE. EEG neurofeedback is under strong control of psychosocial factors. Appl Psychophysiol Biofeedback. 2018;43(4):293–300. doi: 10.1007/s10484-018-9407-3
  • Roc A, Pillette L, Mladenovic J, et al. A review of user training methods in brain computer interfaces based on mental tasks. J Neural Eng. 2021;18(1):011002. doi: 10.1088/1741-2552/abca17
  • Alimardani M, Nishio S, Ishiguro H. Effect of biased feedback on motor imagery learning in BCI-teleoperation system. Front Syst Neurosci. 2014;8:52. doi: 10.3389/fnsys.2014.00052
  • Alimardani M, Nishio S, Ishiguro H, et al. The importance of visual feedback design in BCIs; from embodiment to motor imagery learning. PLoS One. 2016;11(9):e0161945. doi: 10.1371/journal.pone.0161945
  • Tibrewal N, Leeuwis N, Alimardani M, et al. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users. PLoS One. 2022;17(7):e0268880. doi: 10.1371/journal.pone.0268880
  • Singh AK, Sahonero-Alvarez G, Mahmud M, et al. Towards bridging the gap between computational intelligence and neuroscience in brain-computer interfaces with a common description of systems and data. Front Neuroinform. 2021b;15:699840. doi: 10.3389/fninf.2021.699840