17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A review of big data analytics models for assessing non-pharmaceutical interventions for COVID-19 pandemic management

ORCID Icon, ORCID Icon & ORCID Icon
Received 21 Mar 2023, Accepted 22 Jun 2024, Published online: 30 Jul 2024

References

  • Abbasi, Z., Zamani, I., Mehra, A. H. A., Shafieirad, M., & Ibeas, A. (2020). Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19. Chaos, Solitons and Fractals, 139, https://doi.org/10.1016/j.chaos.2020.110054
  • Ansumali, S., Kaushal, S., Kumar, A., Prakash, M. K., & Vidyasagar, M. (2020). Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2. Annual Reviews in Control, 50, 432–447. Elsevier Ltd. https://doi.org/10.1016/j.arcontrol.2020.10.003
  • Arango, M., & Pelov, L. (2020). COVID-19 pandemic cyclic lockdown optimization using reinforcement learning. ArXiv Preprint ArXiv:2009.04647.
  • Auger, K. A., Shah, S. S., Richardson, T., Hartley, D., Hall, M., Warniment, A., Timmons, K., Bosse, D., Ferris, S. A., Brady, P. W., Schondelmeyer, A. C., & Thomson, J. E. (2020). Association between statewide school closure and COVID-19 incidence and mortality in the US. JAMA – Journal of the American Medical Association, 324(9), 859–870. https://doi.org/10.1001/jama.2020.14348
  • Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348–355. https://doi.org/10.1093/ije/dyw098
  • Bragazzi, N. L., Dai, H., Damiani, G., Behzadifar, M., Martini, M., & Wu, J. (2020). How big data and artificial intelligence can help better manage the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 17(9), https://doi.org/10.3390/ijerph17093176
  • Brauner, J. M., Mindermann, S., Sharma, M., Johnston, D., Salvatier, J., Gavenčiak, T., Stephenson, A. B., Leech, G., Altman, G., Mikulik, V., Norman, A. J., Monrad, J. T., Besiroglu, T., Ge, H., Hartwick, M. A., Teh, Y. W., Chindelevitch, L., Gal, Y., & Kulveit, J. (2021). Inferring the effectiveness of government interventions against COVID-19. Science, 371(6531), https://doi.org/10.1126/science.abd9338
  • Carcione, J. M., Santos, J. E., Bagaini, C., & Ba, J. (2020). A simulation of a COVID-19 epidemic based on a deterministic SEIR model. Frontiers in Public Health, 8(May), https://doi.org/10.3389/fpubh.2020.00230
  • Chadi, M. A., & Mousannif, H. (2022). A reinforcement learning based decision support tool for epidemic control: Validation study for COVID-19. Applied Artificial Intelligence, 36(1), 1–33. https://doi.org/10.1080/08839514.2022.2031821
  • Chen, R. M. (2022). On COVID-19 country containment metrics: A new approach. Journal of Decision Systems, 31(1-2), 116–133. https://doi.org/10.1080/12460125.2021.1886625
  • Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons and Fractals, 135, https://doi.org/10.1016/j.chaos.2020.109864
  • Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Elizabeth Halloran, M., Longini, I. M., & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395–400. https://doi.org/10.1126/science.aba9757
  • Choi, W., & Shim, E. (2021). Optimal strategies for social distancing and testing to control COVID-19. Journal of Theoretical Biology, 512, 110568. https://doi.org/10.1016/j.jtbi.2020.110568
  • Chowdhury, R., Heng, K., Shawon, M. S. R., Goh, G., Okonofua, D., Ochoa-Rosales, C., Gonzalez-Jaramillo, V., Bhuiya, A., Reidpath, D., Prathapan, S., Shahzad, S., Althaus, C. L., Gonzalez-Jaramillo, N., & Franco, O. H. (2020). Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling study comparing 16 worldwide countries. European Journal of Epidemiology, 35(5), 389–399. https://doi.org/10.1007/s10654-020-00649-w
  • Cooper, I., Mondal, A., & Antonopoulos, C. G. (2020). A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons and Fractals, 139, 110057. https://doi.org/10.1016/j.chaos.2020.110057
  • Cowling, B. J., Ali, S. T., Ng, T. W. Y., Tsang, T. K., Li, J. C. M., Fong, M. W., Liao, Q., Kwan, M. Y., Lee, S. L., Chiu, S. S., Wu, J. T., Wu, P., & Leung, G. M. (2020). Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: An observational study. The Lancet Public Health, 5(5), e279–e288. https://doi.org/10.1016/S2468-2667(20)30090-6
  • Deng, Y., & Zhao, Y. (2022). Mathematical modeling for COVID-19 with focus on intervention strategies and cost-effectiveness analysis. Non-linear Dynamics, 110(4), 3893–3919. https://doi.org/10.1007/s11071-022-07777-w
  • Donadelli, M., Gufler, I., Kizys, R., & Lucchetta, M. (2022). Variability and strictness in COVID-19 government response : A macro-regional assessment. Journal of Government and Economics, 6(February), 100039. https://doi.org/10.1016/j.jge.2022.100039
  • Eker, S. (2020). Validity and usefulness of COVID-19 models. Humanities and Social Sciences Communications, 7(1), 1–5. https://doi.org/10.1057/s41599-020-00553-4
  • Emeto, T. I., Alele, F. O., & Ilesanmi, O. S. (2021). Evaluation of the effect of border closure on COVID-19 incidence rates across nine African countries: An interrupted time series study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1–10. https://doi.org/10.1093/trstmh/trab033
  • Ertem, Z., Araz, O. M., & Cruz-Aponte, M. (2022). A decision analytic approach for social distancing policies during early stages of COVID-19 pandemic. Decision Support Systems, 161(December 2020), https://doi.org/10.1016/j.dss.2021.113630
  • Fazio, M., Pluchino, A., Inturri, G., Le Pira, M., Giuffrida, N., & Ignaccolo, M. (2022). Exploring the impact of mobility restrictions on the COVID-19 spreading through an agent-based approach. Journal of Transport and Health, 25(April), 101373. https://doi.org/10.1016/j.jth.2022.101373
  • Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Mellan, T. A., Coupland, H., Whittaker, C., Zhu, H., Berah, T., Eaton, J. W., Monod, M., Perez-Guzman, P. N., Schmit, N., Cilloni, L., Ainslie, K. E. C., Baguelin, M., Boonyasiri, A., Boyd, O., Cattarino, L., … Bhatt, S. (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 584(7820), 257–261. https://doi.org/10.1038/s41586-020-2405-7
  • Fox, J., & Weisberg, S. (2018). Time-series regression and generalized least squares: An appendix. An R Companion to Applied Regression, 1–8. http://tinyurl.com/carbook
  • Fuller, J. A., Hakim, A., Victory, K. R., Date, K., Lynch, M., & Dahl, B. (2021). Mitigation policies and COVID-19 – associated mortality. Morbidity and Mortality Weekly Report, 70(2), 1–5.
  • Gabler, J., Raabe, T., Röhrl, K., & Gaudecker, H. M. V. (2022). The effectiveness of testing, vaccinations and contact restrictions for containing the COVID-19 pandemic. Scientific Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-12015-9
  • Ge, Y., Zhang, W. B., Liu, H., Ruktanonchai, C. W., Hu, M., Wu, X., Song, Y., Ruktanonchai, N. W., Yan, W., Cleary, E., & Feng, L. (2022). Impacts of worldwide individual non-pharmaceutical interventions on COVID-19 transmission across waves and space. International Journal of Applied Earth Observation and Geoinformation, 106(December 2021), 102649. https://doi.org/10.1016/j.jag.2021.102649
  • Ge, Y., Zhang, W. B., Wu, X., Ruktanonchai, C. W., Liu, H., Wang, J., Song, Y., Liu, M., Yan, W., Yang, J., Cleary, E., Qader, S. H., Atuhaire, F., Ruktanonchai, N. W., Tatem, A. J., & Lai, S. (2022). Untangling the changing impact of non-pharmaceutical interventions and vaccination on European COVID-19 trajectories. Nature Communications, 13(1), 1–9, https://doi.org/10.1038/s41467-021-27699-2
  • Goic, M., Bozanic-Leal, M. S., Badal, M., & Basso, L. J. (2021). COVID-19: Short-term forecast of ICU beds in times of crisis. PLoS One, 16(1), 1–24. https://doi.org/10.1371/journal.pone.0245272
  • Gois, F. N. B., Lima, A., Santos, K., Oliveira, R., Santiago, V., Melo, S., Costa, R., Oliveira, M., Henrique, F., das, C. D. M., Neto, J. X., Sobrinho, C. R. M. R., & Marques, J. A. L. (2021). Predictive models to the COVID-19. In Data science for COVID-19 (pp. 1–24). Academic Press.
  • Greer, S. L., Jarman, H., Falkenbach, M., Massard da Fonseca, E., Raj, M., & King, E. J. (2021). Social policy as an integral component of pandemic response: Learning from COVID-19 in Brazil, Germany, India and the United States. Global Public Health, 16(8–9), 1209–1222. https://doi.org/10.1080/17441692.2021.1916831
  • Grimm, V., Mengel, F., & Schmidt, M. (2021). Extensions of the SEIR model for the analysis of tailored social distancing and tracing approaches to cope with COVID-19. Scientific Reports, 11(1), https://doi.org/10.1038/s41598-021-83540-2
  • Guo, X., Chen, P., Liang, S., Jiao, Z., & Li, L. (2022). PaCAR : COVID-19 pandemic control decision making via large-scale agent-based modeling and deep reinforcement learning. Medical Decision Making, 42(8), 1064–1077. https://doi.org/10.1177/0272989X221107902
  • Haug, N., Geyrhofer, L., Londei, A., Dervic, E., Desvars-Larrive, A., Loreto, V., Pinior, B., Thurner, S., & Klimek, P. (2020). Ranking the effectiveness of worldwide COVID-19 government interventions. Nature Human Behaviour, 4(12), 1303–1312. https://doi.org/10.1038/s41562-020-01009-0
  • Holmdahl, I., & Buckee, C. (2020). Wrong but useful – what COVID-19 epidemiologic models Can and cannot tell Us. New England Journal of Medicine, 383(4), 303–305. https://doi.org/10.1056/NEJMp2016822
  • Hou, X., Gao, S., Li, Q., Kang, Y., Chen, N., Chen, K., Rao, J., Ellenberg, J. S., & Patz, J. A. (2021). Intracounty modeling of COVID-19 infection with human mobility: Assessing spatial heterogeneity with business traffic, age, and race. Proceedings of the National Academy of Sciences of the United States of America, 118(24), 1–9. https://doi.org/10.1073/pnas.2020524118
  • Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller, H., Huang, L. Y., Hultgren, A., Krasovich, E., Lau, P., Lee, J., Rolf, E., Tseng, J., & Wu, T. (2020). The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature, 584(7820), 262–267. https://doi.org/10.1038/s41586-020-2404-8
  • Islam, N., Sharp, S. J., Chowell, G., Shabnam, S., Kawachi, I., Lacey, B., Massaro, J. M., D’Agostino, R. B., & White, M. (2020). Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. The BMJ, 370, 1–10. https://doi.org/10.1136/bmj.m2743
  • Khadilkar, H., Ganu, T., & Seetharam, D. P. (2020). Optimising lockdown policies for epidemic control using reinforcement learning. Transactions of the Indian National Academy of Engineering, 5(2), 129–132. https://doi.org/10.1007/s41403-020-00129-3
  • Kwak, G. H., Ling, L., & Hui, P. (2021). Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic. PLoS One, 16(5), 1–15. https://doi.org/10.1371/journal.pone.0251550
  • Li, L. (2021). Leveraging emerging technology to fight the COVID-19 pandemic. Journal of Industrial Integration and Management, 6(2), 141–145. https://doi.org/10.1142/S2424862221020012
  • Liu, Y., Morgenstern, C., Kelly, J., Lowe, R., Munday, J., Villabona-Arenas, C. J., Gibbs, H., Pearson, C. A. B., Prem, K., Leclerc, Q. J., Meakin, S. R., Edmunds, W. J., Jarvis, C. I., Gimma, A., Funk, S., Quaife, M., Russell, T. W., Emory, J. C., Abbott, S., … Jit, M. (2021). The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Medicine, 19(1), 1–31. https://doi.org/10.1186/s12916-020-01826-0
  • Liu, Y., Yu, Q., Wen, H., Shi, F., Wang, F., Zhao, Y., Hong, Q., & Yu, C. (2022). What matters : Non–pharmaceutical interventions for COVID- 19 in Europe. Antimicrobial Resistance & Infection Control, 1–9. https://doi.org/10.1186/s13756-021-01039-x
  • Lu, Y., & Williams, T. L. (2021). Modeling analytics in COVID-19: Prediction, prevention, control, and evaluation. Journal of Management Analytics, 8(3), 424–442. https://doi.org/10.1080/23270012.2021.1946664
  • Mader, S., & Rüttenauer, T. (2022). The effects of Non-pharmaceutical interventions on COVID-19 mortality: A generalized synthetic control approach across 169 countries. Frontiers in Public Health, 10(April), 1–8. https://doi.org/10.3389/fpubh.2022.820642
  • Mannarini, G., Posa, F., Bossy, T., Massemin, L., Fernandez-Castanon, J., Chavdarova, T., Cañas, P., Gupta, P., Jaggi, M., & Hartley, M.-A. (2022). What if … ? pandemic policy-decision-support to guide a cost-benefit-optimised, country-specific response. PLOS Global Public Health, 2(8), e0000721. https://doi.org/10.1371/journal.pgph.0000721
  • Memari, P., Navazi, F., & Jolai, F. (2021). Hybrid wind-municipal solid waste biomass power plant location selection considering waste collection problem: A case study. Energy Sources, Part B: Economics, Planning, and Policy, 16(8), 719–739. https://doi.org/10.1080/15567249.2021.1965261
  • Memon, Z., Qureshi, S., & Memon, B. R. (2021). Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study. Chaos, Solitons and Fractals, 144(March 2020), https://doi.org/10.1016/j.chaos.2021.110655
  • Meng, X., Guo, M., Gao, Z., Yang, Z., Yuan, Z., & Kang, L. (2022). The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China. Transport Policy, 117, 169–180. https://doi.org/10.1016/j.tranpol.2022.01.011
  • Milazzo, A., Giles, L., Parent, N., McCarthy, S., & Laurence, C. (2022). The impact of non-pharmaceutical interventions on COVID-19 cases in South Australia and Victoria. Australian and New Zealand Journal of Public Health, 46(4), 482–487. https://doi.org/10.1111/1753-6405.13249
  • Mingolla, S., & Lu, Z. (2022). Health policy impact of implementation timing on the effectiveness of stay-at-home requirement under the COVID-19 pandemic : Lessons from the Italian case. Health Policy, 126(6), 504–511. https://doi.org/10.1016/j.healthpol.2022.04.001
  • Miralles-Pechuán, L., Jiménez, F., Ponce, H., & Martínez-Villaseñor, L. (2020). A methodology based on deep Q-learning/genetic algorithms for optimizing COVID-19 pandemic government actions. International conference on information and knowledge management, proceedings (pp. 1135–1144).
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007
  • Morato, M. M., Bastos, S. B., Cajueiro, D. O., & Normey-Rico, J. E. (2020). An optimal predictive control strategy for COVID-19 (SARS-CoV-2) social distancing policies in Brazil. Annual Reviews in Control, 50(July), 417–431. https://doi.org/10.1016/j.arcontrol.2020.07.001
  • Navazi, F., Yuan, Y., & Archer, N. (2022a). Optimizing COVID-19 pandemic control policies via meta-heuristic and reinforcement learning algorithms trained on COVID-19 Big data sets. CORS/INFORMS International Conference.
  • Navazi, F., Yuan, Y., & Archer, N. (2022b). The effect of the Ontario stay-at-home order on COVID-19 third wave infections including vaccination considerations: An interrupted time series analysis. PLoS One, 17(4), e0265549. https://doi.org/10.1371/journal.pone.0265549
  • Navazi, F., Yuan, Y., & Archer, N. (2023a). An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Analytics, 4(July), 100227. https://doi.org/10.1016/j.health.2023.100227
  • Navazi, F., Yuan, Y., & Archer, N. (2023b). Calculating the effectiveness of COVID-19 Non-pharmaceutical interventions with interrupted time series analysis via clustering-based counterfactual country. Engineering Proceedings, 39(1), 51. https://www.mdpi.com/2673-4591/39/1/51
  • Nguyen, Q. D., & Prokopenko, M. (2022). A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-021-99269-x
  • Novakovic, A., & Marshall, A. H. (2022). The CP-ABM approach for modelling COVID-19 infection dynamics and quantifying the effects of non-pharmaceutical interventions. Pattern Recognition, 130, 108790. https://doi.org/10.1016/j.patcog.2022.108790
  • Nussbaumer-Streit, B., Mayr, V., Dobrescu, A. I., Chapman, A., Persad, E., Klerings, I., Wagner, G., Siebert, U., Ledinger, D., Zachariah, C., & Gartlehner, G. (2020). Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database of Systematic Reviews, 9, https://doi.org/10.1002/14651858.CD013574.pub2
  • Ohi, A. Q., Mridha, M. F., Monowar, M. M., & Hamid, M. A. (2020). Exploring optimal control of epidemic spread using reinforcement learning. Scientific Reports, 10(1), 1–19. https://doi.org/10.1038/s41598-019-56847-4
  • Onozuka, D., Tanoue, Y., Nomura, S., Kawashima, T., Yoneoka, D., Eguchi, A., Ng, C. F. S., Matsuura, K., Shi, S., Makiyama, K., Uryu, S., Kawamura, Y., Takayanagi, S., Gilmour, S., Hayashi, T. I., Miyata, H., Sera, F., Sunagawa, T., Takahashi, T., … Hashizume, M. (2022). Reduced mortality during the COVID-19 outbreak in Japan, 2020: A two-stage interrupted time-series design. International Journal of Epidemiology, 51(1), 75–84. https://doi.org/10.1093/ije/dyab216
  • Padmanabhan, R., Meskin, N., Khattab, T., Shraim, M., & Al-Hitmi, M. (2021). Reinforcement learning-based decision support system for COVID-19. Biomedical Signal Processing and Control, 68, 102676. https://doi.org/10.1016/j.bspc.2021.102676
  • Piotrowski, A. P., & Piotrowska, A. E. (2021). Differential evolution and particle swarm optimization against COVID-19. Artificial Intelligence Review, 55(3), https://doi.org/10.1007/s10462-021-10052-w
  • Piovani, D., Christodoulou, M. N., Hadjidemetriou, A., Pantavou, K., Zaza, P., Bagos, P. G., Bonovas, S., & Nikolopoulos, G. K. (2021). Effect of early application of social distancing interventions on COVID-19 mortality over the first pandemic wave: An analysis of longitudinal data from 37 countries. Journal of Infection, 82(1), 133–142. https://doi.org/10.1016/j.jinf.2020.11.033
  • Pirkis, J., John, A., Shin, S., DelPozo-Banos, M., Arya, V., Analuisa-Aguilar, P., Appleby, L., Arensman, E., Bantjes, J., Baran, A., Bertolote, J. M., Borges, G., Brečić, P., Caine, E., Castelpietra, G., Chang, S. S., Colchester, D., Crompton, D., Curkovic, M., … Spittal, M. J. (2021). Suicide trends in the early months of the COVID-19 pandemic: An interrupted time-series analysis of preliminary data from 21 countries. The Lancet Psychiatry, 8(7), 579–588. https://doi.org/10.1016/S2215-0366(21)00091-2
  • Public Health Ontario. (2020). COVID-19 response framework: Keeping Ontario safe and open. 1–19. https://www.ontario.ca/page/covid-19-response-framework-keeping-ontario-safe-and-open
  • Rahimi, I., Chen, F., & Gandomi, A. H. (2021). A review on COVID-19 forecasting models. Neural Computing and Applications, 8, https://doi.org/10.1007/s00521-020-05626-8
  • Saki, M., Ghanbari, M. K., Behzadifar, M., Imani-Nasab, M. H., Behzadifar, M., Azari, S., Bakhtiari, A., Wu, J., & Bragazzi, N. L. (2021). The impact of the social distancing policy on COVID-19 incidence cases and deaths in Iran from February 2020 to January 2021: Insights from an interrupted time series analysis. Yale Journal of Biology and Medicine, 94(1), 13–21.
  • Siegenfeld, A. F., Taleb, N. N., & Bar-Yam, Y. (2020). What models can and cannot tell us about COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 117(28), 16092–16095. https://doi.org/10.1073/pnas.2011542117
  • Silva, L., Filho, D. F., & Fernandes, A. (2020). The effect of lockdown on the COVID-19 epidemic in Brazil: Evidence from an interrupted time series design. Cadernos de Saude Publica, 36(10), https://doi.org/10.1590/0102-311X00213920
  • Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
  • Sun, J., Zheng, Y., Liang, W., Yang, Z., Zeng, Z., Li, T., Luo, J., Tat, M., Ng, A., Mph, M., He, J., & Zhong, N. (2021). Quantifying the effect of public activity intervention policies on COVID-19 pandemic containment using epidemiologic data from 145 countries. Value in Health, 25(5), 699–708. https://doi.org/10.1016/j.jval.2021.10.007
  • Tao, S., Bragazzi, N. L., Wu, J., Mellado, B., & Kong, J. D. (2022). Harnessing artificial intelligence to assess the impact of nonpharmaceutical interventions on the second wave of the coronavirus disease 2019 pandemic across the world. Scientific Reports, 1–9. https://doi.org/10.1038/s41598-021-04731-5
  • Tatem, A. J., Guerra, C. A., Atkinson, P. M., & Hay, S. I. (2004). Momentous sprint at the 2156 olympics? Nature, 431(7008), 525. https://doi.org/10.1038/431525a
  • Thayer, W. M., Hasan, M. Z., Sankhla, P., & Gupta, S. (2021). An interrupted time series analysis of the lockdown policies in India: A national-level analysis of COVID-19 incidence. Health Policy and Planning, 36(5), 620–629. https://doi.org/10.1093/heapol/czab027
  • Toosi, G., & Ahmadi, M. M. (2023). Robust process capability indices for multivariate linear profiles. 2023 Systems and Information Engineering Design Symposium (SIEDS) (pp. 165–170).
  • Tully, M. A., McMaw, L., Adlakha, D., Blair, N., McAneney, J., McAneney, H., Carmichael, C., Cunningham, C., Armstrong, N. C., & Smith, L. (2021). The effect of different COVID-19 public health restrictions on mobility: A systematic review. PLoS One, 16(12 December), 1–18. https://doi.org/10.1371/journal.pone.0260919
  • Uddin, M. I., Ali Shah, S. A., Al-Khasawneh, M. A., Alarood, A. A., & Alsolami, E. (2022). Optimal policy learning for COVID-19 prevention using reinforcement learning. Journal of Information Science, 48(3), 336–348. https://doi.org/10.1177/0165551520959798
  • Wang, Z., Whittington, J., Yuan, H.-Y., Miao, H., Tian, H., & Stenseth, N. C. (2021). Evaluating the effectiveness of control measures in multiple regions during the early phase of the COVID-19 pandemic in 2020. Biosafety and Health, 3(5), 264–275. https://doi.org/10.1016/j.bsheal.2021.09.002
  • Wei, Y., Guan, J., Ning, X., Li, Y., Wei, L., Shen, S., & Zhang, R. (2020). Global COVID-19 pandemic waves : Limited lessons learned worldwide over the past year. Engineering Journal, https://doi.org/10.1016/j.eng.2021.07.015
  • Weltz, J., Volfovsky, A., & Laber, E. B. (2022). Reinforcement learning methods in public health. Clinical Therapeutics, 44(1), 139–154. https://doi.org/10.1016/j.clinthera.2021.11.002
  • Wen, W. U. J., Kang, J. X., Hui, D. U. X., Tao, J. Z., Ru, L. Z., & Fan, P. M. (2022). Assessment of the benefits of targeted interventions for pandemic control in China based on machine learning method and Web service for COVID-19 policy simulation. Biomedical and Environmental Sciences, 35(5), 412–418. https://doi.org/10.3967/bes2022.057
  • WHO. (2021). WHO coronavirus (COVID-19) dashboard. WHO coronavirus (COVID-19) dashboard With vaccination data. https://covid19.who.int/
  • Wibbens, P. D., Koo, W. W. Y., & McGahan, A. M. (2020). Which COVID policies are most effective? A Bayesian analysis of COVID-19 by jurisdiction. PLoS One, 15(12 December), e0244177. https://doi.org/10.1371/journal.pone.0244177
  • World Health Organization. (2015). Anticipating emerging infectious disease epidemics. Anticipating Emerging Infectious Disease Epidemics, December, 1–25.
  • Wu, J., Wang, J., Nicholas, S., Maitland, E., & Fan, Q. (2020). Application of big data technology for COVID-19 prevention and control in China: Lessons and recommendations. Journal of Medical Internet Research, 22(10), https://doi.org/10.2196/21980
  • Yin, S., Zhang, N., & Xu, J. (2021). Information fusion for future COVID-19 prevention: Continuous mechanism of big data intelligent innovation for the emergency management of a public epidemic outbreak. Journal of Management Analytics, 8(3), 391–423. https://doi.org/10.1080/23270012.2021.1945499
  • Yousefpour, A., Jahanshahi, H., & Bekiros, S. (2020). Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak. Chaos, Solitons and Fractals, 136, 109883. https://doi.org/10.1016/j.chaos.2020.109883
  • Zhang, G., & Liu, X. (2021). Prediction and control of COVID-19 spreading based on a hybrid intelligent model. PLoS One, 16(2), e0246360. https://doi.org/10.1371/journal.pone.0246360
  • Zhong, S., Chen, Z., Wang, Y., Sheng, P., Shi, S., Lyu, Y., Bai, R., Wang, P., Dong, J., Ba, J., Qu, X., & Lu, J. (2021). Braking force model on virus transmission to evaluate interventions including the administration of COVID-19 vaccines – worldwide, 2019–2021. China CDC Weekly, 3(41), 869–877. https://doi.org/10.46234/ccdcw2021.195
  • Zhou, F., Hu, T. J., Zhang, X. Y., Lai, K., Chen, J. H., & Zhou, X. H. (2022). The association of intensity and duration of non-pharmacological interventions and implementation of vaccination with COVID-19 infection, death, and excess mortality: Natural experiment in 22 European countries. Journal of Infection and Public Health, 15(5), 499–507. https://doi.org/10.1016/j.jiph.2022.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.