439
Views
5
CrossRef citations to date
0
Altmetric
Regular Articles

Grandmother cells: much ado about nothing

&
Pages 342-349 | Received 02 Mar 2016, Accepted 01 Aug 2016, Published online: 03 Oct 2016

References

  • Bear, M. F., Connors, B. W., & Paradiso, M. A. (2001) Neuroscience: Exploring the brain. Baltimore, MD: Lippincott Williams & Wilkins.
  • Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience. Psychological Review, 116, 220–251. doi:10.1037/a0014462
  • Bowers, J. S. (2010).  More on grandmother cells and the biological implausibility of PDP models of cognition: A reply to Plaut and McClelland (2010) and Quian, Quiroga and Kreiman (2010). Psychological Review, 117(1), 300 –3308. doi:10.1037/a0018047
  • Busigny, T., Graf, M., Mayer, E., & Rossion, B. (2010). Acquired prosopagnosia as a face-specific disorder: Ruling out the general visual similarity account. Neuropsychologia, 48, 2051–2067. doi:10.1016/j.neuropsychologia.2010.03.026
  • Camarazza, A., & Mahon, B. Z. (2003). The organization of conceptual knowledge: The evidence from category-specific semantic deficits. Trends in Cognitive Science, 7, 354–361. doi:10.1016/S1364-6613(03)00159-1
  • Capitani, E., Laiacona, M., Mahon, B., & Camarazza, A. (2003). What are the facts of semantic category specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20, 213–261. doi:10.1080/02643290244000266
  • Damasio, A. R., Damasio, H., & Van Hoesen, G. W. (1982). Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology, 32, 331–331. doi:10.1212/WNL.32.4.331
  • De Renzi, E. (1997). Prosopagnosia. In T. E. Feinberg, & M. J. Farah (Eds.), Behavioral neurology and neuropsychology (pp. 245–255). New York, NY: McGraw-Hill.
  • De Renzi, E. (2000). Disorders of visual recognition. Seminars in Neurology, 20, 479–485. doi:10.1055/s-2000-13181
  • Duchaine, B., & Nakayama, K. (2005). Dissociations in face and object recognition in developmental prosopagnosia. Journal of Cognitive Neuroscience, 17, 249–261. doi: 10.1162/0898929053124857
  • Etcoff, N., Freeman, R., & Cave, K. R. (1991). Can we lose memories of face? Content specificity and awareness in a prosopagnosic. Journal of Cognitive Neuroscience, 3, 25–41. doi:10.1162/jocn.1991.3.1.25
  • Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6, 559–601. doi:10.1162/neco.1994.6.4.559
  • Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology, Neurosurgery & Psychiatry, 66, 137–147. doi:10.1136/jnnp.66.2.137
  • Franco, L., Rolls, E. T., Aggelopoulos, N. C., & Jerez, J. M. (2007). Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics, 96, 547–560. doi:10.1007/s00422-007-0149-1
  • Fujita, I. (2002). The inferior temporal cortex: Architecture, computation, and representation. Journal of Neurocytology, 31, 359–371. doi:10.1023/A:1024138413082
  • Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360, 343–346. doi:10.1038/360343a0
  • Gauthier, I., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11, 349–370. doi:10.1162/089892999563472
  • Goldberg, E. (1990). Associative agnosias and the functions of the left hemisphere. Journal of Clinical and Experimental Neuropsychology, 12, 467–484. doi:10.1080/01688639008400994
  • Greene, J. D. W. (2005). Apraxia, agnosia, and higher visual function abnormalities. Journal of Neurology, Neurosurgery and Psychiatry, 76, v25–v34. doi:10.1136/jnnp.2005.081885
  • Grill-Spector, K. (2003). The neural basis of object recognition. Current Opinion in Neurobiology, 13, 159–166. doi:10.1016/S0959-4388(03)00040-0
  • Gross, C. G. (2002).  Genealogy of the “Grandmother Cell”. Neuroscientist, 8(5), 512–518. doi:10.1177/107385802237175
  • Gross, C. G., Roche-Miranda, G. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–11.
  • Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal, golden braid. New York, NY: Basic Books.
  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154. doi: 10.1113/jphysiol.1962.sp006837
  • Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.
  • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480. doi:10.1109/5.58325
  • Kohonen, T. (1993). Physiological interpretation of the self-organizing map algorithm. Neural Networks, 6, 895–905. doi:10.1016/S0893-6080(05)90000-2
  • Konorski, J. (1967). Integrative activity of the brain. Chicago, IL: University of Chicago Press.
  • Meyer, J. S., Xu, G., Thornby, J., Chowdhury, M. H., & Quach, M. (2016). Is mild cognitive impairment prodromal for vascular dementia like Alzheimer’s disease? Stroke, 33, 1981–1985. doi:10.1161/01.STR.0000024432.34557.10
  • Moscovitch, M., Winocur, G., & Behrmann, M. (1997). What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. Journal of Cognitive Neuroscience, 9, 555–604. doi:10.1162/jocn.1997.9.5.555
  • O’Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annual Review of Neuroscience, 34, 185–204. doi:10.1146/annurev-neuro-061010-113613
  • Plaut, D., & McClelland, J. (2010). Locating object knowledge in the brain: Comment on Bowers (2009). Psychological Review, 117(1), 284–290. doi:10.1037/a0017101
  • Quiroga, R. Q., & Kreiman, G. (2010). Measuring sparseness in the brain: Comment on Bowers (2009). Psychological Review, 117(1), 291–297. doi:10.1037/a0016917
  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107. doi:10.1039/nature03687
  • Rezlescu, C., Pitcher, D., & Duchaine, B. (2012). Acquired prosopagnosia with spared within-class object recognition but impaired recognition of basic-level objects. Cognitive Neuropsychology, 29, 325–347. doi:10.1080/02643294.2012.749223
  • Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713–726.
  • Rolls, E. T., & Treves, A. (1990). The relative advantage of sparse versus distributed encoding for associative neuronal networks in the brain. Network, 1, 407–421. doi:10.1088/0954-898X_1_4_002
  • Rolls, E. T., & Treves, A. (2011). The neuronal encoding of information in the brain. Progress in Neurobiology, 95, 448–490. doi:10.1016/j.pneurobio.2011.08.002
  • Rolls, E. T., Treves, A., Tovee, M., & Panzeri, S. (1997). Information in the neural representation of individual stimuli in the primate temporal visual cortex. Journal of Computational Neuroscience, 4, 309–333. doi:10.1023/A:1008899916425
  • Sary, G., Vogels, R., & Orban, G. A. (1993). Cue-invariant shape selectivity of macaque inferior temporal neurons. Science, 260, 995–997. doi:10.1126/science.8493538
  • Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262, 685–688. doi: 10.1126/science.8235589
  • Tarr, M. J., & Gauthier, I. (2000). FFA: A flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience, 3, 764–769. doi:10.1038/77666
  • Thomas, E., Van Hulle, M., & Vogels, R. (2002). Encoding of categories by noncategory-specific neurons in the inferior temporal cortex. Journal of Cognitive Neuroscience, 13, 190–200. doi:10.1162/089892901564252
  • Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance and the response of neurons in the temporal visual cortical areas of the alert macaque. Journal of Neurophysiology, 72, 1049–1060.
  • Vogels, R. (1999a). Categorization of complex visual images by rhesus monkeys. Part 1: Behavioral study. European Journal of Neuroscience, 11, 1223–1238. doi:10.1046/j.1460-9568.1999.00530.x
  • Vogels, R. (1999b). Categorization of complex visual images by rhesus monkeys. Part 2: Single-cell study.  European Journal of Neuroscience, 11, 1239–1255. doi:10.1046/j.1460-9568.1999.00531.x
  • Vogels, R., & Orban, G. (1996). Coding of stimulus invariances by inferior temporal neurons. Progress in Brain Research, 112, 195–211. doi: 10.1016/S0079-6123(08)63330-0
  • Warrington, E. K., & Shallice, T. (1984). Category-specific semantic impairment. Brain, 107, 829–854. doi: 10.1093/brain/107.3.829
  • Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256, 1327–1331. doi:10.1126/science.1598577

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.