2,015
Views
16
CrossRef citations to date
0
Altmetric
Regular Articles

Discourse-level comprehension engages medial frontal Theory of Mind brain regions even for expository texts

ORCID Icon & ORCID Icon
Pages 780-796 | Received 29 Dec 2017, Accepted 10 Sep 2018, Published online: 26 Sep 2018

References

  • Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60(1), 693–716.
  • Aguirre, G. K., & Farah, M. J. (1998). Human visual object recognition: What have we learned from neuroimaging? Psychobiology, 26(4), 322–332.
  • Baayen, H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.
  • Barbey, A. K., Colom, R., & Grafman, J. (2013). Neural mechanisms of discourse comprehension: A human lesion study. Brain, 137(1), 277–287.
  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.
  • Bates, D. M., Maechler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48.
  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion–symptom mapping. Nature Neuroscience, 6(5), 448–450.
  • Beeman, M. (1993). Semantic processing in the right hemisphere may contribute to drawing inferences from discourse. Brain and Language, 44(1), 80–120.
  • Beeman, M. J., Bowden, E. M., & Gernsbacher, M. A. (2000). Right and left hemisphere cooperation for drawing predictive and coherence inferences during normal story comprehension. Brain and Language, 71(2), 310–336.
  • Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–362.
  • Blank, I. A. (2016). The functional architecture of language comprehension mechanisms: Fundamental principles revealed with fMRI (N. Kanwisher & E. Fedorenko, Eds.). Massachusetts Institute of Technology.
  • Blank, I. A., Kanwisher, N., & Fedorenko, E. (2014). A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations. Journal of Neurophysiology, 112(5), 1105–1118.
  • Blank, I., & Fedorenko, E. (in press). A new functional signature of high-level language regions: common timescales for integrating information.
  • Bybee, J. (1998). A functionalist approach to grammar and its evolution. Evolution of Communication, 2(2), 249–278.
  • Camilleri, J. A., Müller, V. I., Fox, P., Laird, A. R., Hoffstaedter, F., Kalenscher, T., & Eickhoff, S. B. (2018). Definition and characterization of an extended multiple-demand network. NeuroImage, 165, 138–147.
  • Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 4596–4609.
  • de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T. (2016). Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. The Journal of Neuroscience, 36(24), 6553–6562.
  • Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a Theory of Mind task. NeuroImage, 55(2), 705–712.
  • Dufour, N., Redcay, E., Young, L., Mavros, P. L., Moran, J. M., Triantafyllou, C., et al. (2013). Similar brain activation during false belief tasks in a large sample of adults with and without autism. PLoS ONE, 8(9), e75468.
  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179.
  • Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80(1), 35–50.
  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.
  • Egidi, G., & Caramazza, A. (2016). Integration processes compared: Cortical differences for consistency evaluation and passive comprehension in local and global coherence. Journal of Cognitive Neuroscience, 28(10), 1568–1583.
  • Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057–1070.
  • Fedorenko, E. (2014). The role of domain-general cognitive control in language comprehension. Frontiers in Psychology, 5, 335.
  • Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16428–16433.
  • Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Language-selective and domain-general regions Lie side by side within Broca’s area. Current Biology, 22(21), 2059–2062.
  • Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16616–16621.
  • Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitefield-Gabrieli, S., & Kanwisher, N. (2010). New method for fMRI investigations of language: Defining ROIs functionally in individual subjects. Journal of Neurophysiology, 104(2), 1177–1194.
  • Fedorenko, E., Nieto-Castañón, A., & Kanwisher, N. (2012). Lexical and syntactic representations in the brain: An fMRI investigation with multi-voxel pattern analyses. Neuropsychologia, 50(4), 499–513.
  • Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18(3), 120–126.
  • Ferstl, E. C., Neumann, J., Bogler, C., & von-Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581–593.
  • Ferstl, E. C., & von-Cramon, D. Y. (2001). The role of coherence and cohesion in text comprehension: An event-related fMRI study. Cognitive Brain Research, 11(3), 325–340.
  • Ferstl, E. C., & von Cramon, D. Y. (2002). What does the frontomedian cortex contribute to language processing: Coherence or Theory of Mind? NeuroImage, 17(3), 1599–1612.
  • Fletcher, P. C., Happé, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiack, R. S. J., & Frith, C. D. (1995). Other minds in the brain: A functional imaging study of “Theory of Mind” in story comprehension. Cognition, 57(2), 109–128.
  • Friese, U., Rutschmann, R., Raabe, M., & Schmalhofer, F. (2008). Neural indicators of inference processes in text comprehension: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20(11), 2110–2124.
  • Gallagher, H. L., Happé, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: An fMRI study of “Theory of Mind” in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11–21.
  • Gibson, E., Piantadosi, S., & Fedorenko, K. (2011). Using mechanical Turk to obtain and analyze English acceptability judgments. Language and Linguistics Compass, 5(8), 509–524.
  • Goldberg, A. E. (1995). Constructions: A construction grammar approach to argument structure. Chicago: University of Chicago Press.
  • Graesser, A. C., Millis, K. K., & Zwaan, R. A. (1997). Discourse comprehension. Annual Review of Psychology, 48(1), 163–189.
  • Grosz, B. J., & Sidner, C. L. (1986). Attention, intentions, and the structure of discourse. Computational Linguistics, 12(3), 175–204.
  • Haberlandt, K. (1980). Story grammar and reading time of story constituents. Poetics, 9(1-3), 99–118.
  • Haberlandt, K. F., & Graesser, A. C. (1985). Component processes in text comprehension and some of their interactions. Journal of Experimental Psychology: General, 114(3), 357–374.
  • Hasson, U., Yang, E., Vallines, I., Heeger, D. J., & Rubin, N. (2008). A hierarchy of temporal receptive windows in human cortex. Journal of Neuroscience, 28(10), 2539–2550.
  • Hobbs, J. R. (1985). On the coherence and structure of discourse. Stanford, CA: Center for the Study of Language and Information.
  • Jackendoff, R. (2002). Foundations of language. Oxford: OUP.
  • Jacoby, N., Bruneau, E. G., Koster-Hale, J., & Saxe, R. (2016). Localizing pain matrix and theory of mind networks with both verbal and non-verbal stimuli. NeuroImage, 126(C), 39–48.
  • Julian, J. B., Fedorenko, E., Webster, J., & Kanwisher, N. (2012). An algorithmic method for functionally defining regions of interest in the ventral visual pathway. NeuroImage, 60(4), 2357–2364.
  • Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective & Behavioral Neuroscience, 7(3), 153–191.
  • Keenan, J. M., Baillet, S. D., & Brown, P. (1984). The effects of causal cohesion on comprehension and memory. Journal of Verbal Learning and Verbal Behavior, 23, 115–126.
  • Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge: Cambridge University Press.
  • Kintsch, W., Mandel, T. S., & Kozminsky, E. (1977). Summarizing scrambled stories. Memory & Cognition, 5(5), 547–552.
  • Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N., & Holcomb, P. J. (2006). Making sense of discourse: An fMRI study of causal inferencing across sentences. NeuroImage, 33(1), 343–361.
  • Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906–2915.
  • Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177.
  • Lin, N., Yang, X., Li, J., Wang, S., Hua, H., Ma, Y., & Li, X. (2018). Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension. Cognitive, Affective & Behavioral Neuroscience, 103(2), 1–11.
  • Maguire, E. A., Frith, C. D., & Morris, R. G. M. (1999). The functional neuroanatomy of comprehension and memory: The importance of prior knowledge. Brain, 122(Pt 10), 1839–1850.
  • Mahowald, K., & Fedorenko, E. (2016). Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability. NeuroImage, 139, 74–93.
  • Mar, R. A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, 62(1), 103–134.
  • Marcu, D. (2000). The theory and practice of discourse parsing and summarization. Cambridge, Massachusetts, United States: MIT Press.
  • Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8(1), 1–71.
  • Mason, R. A., & Just, M. A. (2009). The role of the theory-of-mind cortical network in the comprehension of narratives. Language and Linguistics Compass, 3(1), 157–174.
  • Mason, R. A., & Just, M. A. (2011). Differentiable cortical networks for inferences concerning people's intentions versus physical causality. Human Brain Mapping, 32(2), 313–329.
  • McNamara, D. S., & Magliano, J. (2009). Toward a comprehensive model of comprehension. In The psychology of learning and motivation (1st ed., Vol. 51, pp. 297–384). Elsevier.
  • Moss, J., & Schunn, C. D. (2015). Comprehension through explanation as the interaction of the brain’s coherence and cognitive control networks. Frontiers in Human Neuroscience, 9, 107–117.
  • Moss, J., Schunn, C. D., Schneider, W., McNamara, D. S., & VanLehn, K. (2011). The neural correlates of strategic reading comprehension: Cognitive control and discourse comprehension. NeuroImage, 58(2), 675–686.
  • Müller, V. I., Langner, R., Cieslik, E. C., Rottschy, C., & Eickhoff, S. B. (2015). Interindividual differences in cognitive flexibility: Influence of gray matter volume, functional connectivity and trait impulsivity. Brain Structure and Function, 220(4), 2401–2414.
  • Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. NeuroImage, 63(3), 1646–1669.
  • Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14(9), 1105–1107.
  • Nijhof, A. D., & Willems, R. M. (2015). Simulating fiction: Individual differences in literature comprehension revealed with fMRI. PLoS ONE, 10(2), e0116492–17.
  • Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain – A meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457.
  • Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2522–2527.
  • Palomero-Gallagher, N., Zilles, K., Schleicher, A., & Vogt, B. A. (2013). Cyto- and receptor architecture of area 32 in human and macaque brains. The Journal of Comparative Neurology, 521(14), 3272–3286.
  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS (Statistics and Computing). In J. Chambers, W. Eddy, W. Hardle, S. Sheather, & L. Tierney, (Eds.), New York: Springer-Verlag.
  • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 59–63.
  • Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron, 72(5), 692–697.
  • Radach, R., Huestegge, L., & Reilly, R. (2008). The role of global top-down factors in local eye-movement control in reading. Psychological Research, 72(6), 675–688.
  • Rice, K, & Redcay, E. (2016). Interaction matters: A perceived social partner alters the neural processing of human speech. NeuroImage, 129, 480–488.
  • Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147–156.
  • Sabbagh, M. A. (1999). Communicative intentions and language: Evidence from right-hemisphere damage and autism. Brain and Language, 70(1), 29–69.
  • Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind.” NeuroImage, 19(4), 1835–1842.
  • Saxe, R., & Powell, L. J. (2006). It's the thought that counts: Specific brain regions for One component of theory of mind. Psychological Science, 17(8), 692–699.
  • Saxe, R., Schulz, L. E., & Jiang, Y. V. (2006). Reading minds versus following rules: Dissociating theory of mind and executive control in the brain. Social Neuroscience, 1(3-4), 284–298.
  • Scholz, J., Triantafyllou, C., Whitfield-Gabrieli, S., Brown, E. N., & Saxe, R. (2009). Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS ONE, 4(3), e4869.
  • Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34.
  • Singh, R., Fedorenko, E., Mahowald, K., & Gibson, E. (2016). Accommodating presuppositions Is inappropriate in implausible contexts. Cognitive Science, 40(3), 607–634.
  • Skerry, A. E., & Saxe, R. (2014). A common neural code for perceived and inferred emotion. Journal of Neuroscience, 34(48), 15997–16008.
  • Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302–319.
  • Snijders, T. M., Vosse, T., Kempen, G., Van Berkum, J. J. A., Petersson, K. M., & Hagoort, P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral Cortex, 19(7), 1493–1503.
  • Swett, K., Miller, A. C., Burns, S., Hoeft, F., Davis, N., Petrill, S. A., & Cutting, L. E. (2013). Comprehending expository texts: The dynamic neurobiological correlates of building a coherent text representation. Frontiers in Human Neuroscience, 7, 853.
  • Tamir, D. I., Bricker, A. B., Dodell-Feder, D., & Mitchell, J. P. (2015). Reading fiction and reading minds: the role of simulation in the default network. Social cognitive and affective neuroscience, 11(2), 215–224.
  • Team, R. C. (2013). A language and environment for statistical computing.
  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.
  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York, NY: Academic.
  • Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 28–46.
  • Wagner, D. D., Haxby, J. V., & Heatherton, T. F. (2012). The representation of self and person knowledge in the medial prefrontal cortex. Wiley Interdisciplinary Reviews: Cognitive Science, 3(4), 451–470.
  • Wochna, K. L., & Juhasz, B. J. (2013). Context length and reading novel words: An eye-movement investigation. British Journal of Psychology (London, England : 1953), 104(3), 347–363.
  • Wolf, F., & Gibson, E. (2005). Representing discourse coherence: A corpus-based study. Computational Linguistics, 31(2), 249–287.
  • Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005). Language in context: Emergent features of word, sentence, and narrative comprehension. NeuroImage, 25(3), 1002–1015.
  • Yarkoni, T., Speer, N. K., & Zacks, J. M. (2008). Neural substrates of narrative comprehension and memory. NeuroImage, 41(4), 1408–1425.
  • Young, L., Dodell-Feder, D., & Saxe, R. (2010). What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia, 48(9), 2658–2664.
  • Zwaan, R. A., Langston, M. C., & Graesser, A. C. (1995). The construction of situation models in narrative comprehension: An event-indexing model. Psychological Science, 6(5), 292–297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.