432
Views
11
CrossRef citations to date
0
Altmetric
Regular Articles

Neural substrates of subphonemic variation and lexical competition in spoken word recognition

ORCID Icon, , &
Pages 151-169 | Received 14 Jun 2018, Accepted 21 Sep 2018, Published online: 09 Oct 2018

References

  • Abramson, A. S., & Lisker, L. (1985). Relative power of cues: F0 shift versus voice timing. In V. Fromkin (Ed.), Phonetic Linguistics: Essays in Honor of Peter Ladefoged (pp. 25–33). Orlando, FL: Academic Press.
  • Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38(4), 419–439. doi: 10.1006/jmla.1997.2558
  • Andruski, J., Blumstein, S. E., & Burton, M. (1994). The effects of subphonetic differences on lexical access. Cognition, 52, 163–187. doi: 10.1016/0010-0277(94)90042-6
  • Aydelott Utman, J., Blumstein, S. E., & Sullivan, K. (2001). Mapping from sound to meaning: Reduced lexical activation in Broca's aphasics. Brain and Language, 79(3), 444–472. doi: 10.1006/brln.2001.2500
  • Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41(3), 473–487. doi: 10.1016/S0896-6273(03)00851-1
  • Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295–301. doi: 10.1038/nn1198
  • Blumstein, S. E., Myers, E. B., & Rissman, J. (2005). The perception of voice onset time: An fMRI investigation of phonetic category structure. Journal of Cognitive Neuroscience, 17(9), 1353–1366. doi: 10.1162/0898929054985473
  • Borsky, S., Tuller, B., & Shapiro, L. P. (1998). “How to milk a coat:” The effects of semantic and acoustic information on phoneme categorization. The Journal of the Acoustical Society of America, 103(5), 2670–2676. doi: 10.1121/1.422787
  • Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11(9), 825–836. doi: 10.1093/cercor/11.9.825
  • Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a New and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. doi: 10.3758/BRM.41.4.977
  • Burton, M. W., Small, S. L., & Blumstein, S. E. (2000). The role of segmentation in phonological processing: An fMRI investigation. Journal of Cognitive Neuroscience, 12(4), 679–690. doi: 10.1162/089892900562309
  • Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13(11), 1428–1432. doi: 10.1038/nn.2641
  • Chrysikou, E. G., Weber, M. J., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341–355. doi: 10.1016/j.neuropsychologia.2013.10.021
  • Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Perception of speech reflects optimal use of probabilistic speech cues. Cognition, 108(3), 804–809. doi: 10.1016/j.cognition.2008.04.004
  • Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology Section A, 33, 497–505. doi: 10.1080/14640748108400805
  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173. doi: 10.1006/cbmr.1996.0014
  • Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. Journal of Neuroscience, 23(8), 3423–3431. doi: 10.1523/JNEUROSCI.23-08-03423.2003
  • Desai, R., Liebenthal, E., Waldron, E., & Binder, J. R. (2008). Left posterior temporal regions are sensitive to auditory categorization. Journal of Cognitive Neuroscience, 20(7), 1174–1188. doi: 10.1162/jocn.2008.20081
  • Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2013). The brain dynamics of rapid perceptual adaptation to adverse listening conditions. Journal of Neuroscience, 33(26), 10688–10697. doi: 10.1523/JNEUROSCI.4596-12.2013
  • Evans, S., Kyong, J. S., Rosen, S., Golestani, N., Warren, J. E., McGettigan, C., … Scott, S. K. (2014). The pathways for intelligible speech: Multivariate and univariate perspectives. Cerebral Cortex, 24(9), 2350–2361. doi: 10.1093/cercor/bht083
  • Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5(2), 79–83. doi: 10.1002/(SICI)1097-0193(1997)5:2<79::AID-HBM1>3.0.CO;2-J
  • Fischl, B. (2012). Freesurfer. NeuroImage, 62(2), 774–781. doi: 10.1016/j.neuroimage.2012.01.021
  • Francis, A. L., Kaganovich, N., & Driscoll-Huber, C. (2008). Cue-specific effects of categorization training on the relative weighting of acoustic cues to consonant voicing in English. Journal of the Acoustical Society of America, 124(2), 1234–1251. doi: 10.1121/1.2945161
  • Gabrieli, J. D., Poldrack, R. A., & Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences, 95(3), 906–913. doi: 10.1073/pnas.95.3.906
  • Gold, B. T., & Buckner, R. L. (2002). Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron, 35(4), 803–812. doi: 10.1016/S0896-6273(02)00800-0
  • Gow, D. W. (2012). The cortical organization of lexical knowledge: A dual lexicon model of spoken language processing. Brain and Language, 121(3), 273–288. doi: 10.1016/j.bandl.2012.03.005
  • Gow, D. W., & Olson, B. B. (2016). Sentential influences on acoustic-phonetic processing: A granger causality analysis of multimodal imaging data. Language, Cognition and Neuroscience, 31(7), 841–855. doi: 10.1080/23273798.2015.1029498
  • Gow, D. W., Segawa, J. A., Ahlfors, S. P., & Lin, F. H. (2008). Lexical influences on speech perception: A granger causality analysis of MEG and EEG source estimates. Neuroimage, 43(3), 614–623. doi: 10.1016/j.neuroimage.2008.07.027
  • Grabowski, T. J., Damasio, H., & Damasio, A. R. (1998). Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage, 7(3), 232–243. doi: 10.1006/nimg.1998.0324
  • Guediche, S., Salvata, C., & Blumstein, S. E. (2013). Temporal cortex reflects effects of sentence context on phonetic processing. Journal of Cognitive Neuroscience, 25(5), 706–718. doi: 10.1162/jocn_a_00351
  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138. doi: 10.1016/S1364-6613(00)01463-7
  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1), 67–99. doi: 10.1016/j.cognition.2003.10.011
  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. doi: 10.1038/nrn2113
  • Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America, 97(5), 3099–3111. doi: 10.1121/1.411872
  • Kucera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.
  • Leonard, M. K., Baud, M. O., Sjerps, M. J., & Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619. doi: 10.1038/ncomms13619
  • Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15(10), 1621–1631. doi: 10.1093/cercor/bhi040
  • Lisker, L., & Abramson, A. S. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20(3), 384–422. doi: 10.1080/00437956.1964.11659830
  • Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear & Hearing, 19(1), 1–36. doi: 10.1097/00003446-199802000-00001
  • Magnuson, J. S., Dixon, J. A., Tanenhaus, M. K., & Aslin, R. N. (2007). The dynamics of lexical competition during spoken word recognition. Cognitive Science, 31(1), 133–156. doi: 10.1080/03640210709336987
  • Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1–2), 71–102. doi: 10.1016/0010-0277(87)90005-9
  • Marslen-Wilson, W., & Welsh, A. (1978). Processing interactions during word-recognition in continuous speech. Cognitive Psychology, 10, 29–63. doi: 10.1016/0010-0285(78)90018-X
  • McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86. doi: 10.1016/0010-0285(86)90015-0
  • McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage, 61(4), 1277–1286. doi: 10.1016/j.neuroimage.2012.03.068
  • McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2002). Gradient effects of within-category phonetic variation on lexical access. Cognition, 86(2), B33–B42. doi: 10.1016/S0010-0277(02)00157-9
  • McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2009). Within-category VOT affects recovery from “lexical” garden-paths: Evidence against phoneme-level inhibition. Journal of Memory and Language, 60(1), 65–91. doi: 10.1016/j.jml.2008.07.002
  • Mertus, J. A. (2002). BLISS: The Brown lab interactive speech system [Computer software]. Providence, RI: Brown University. Retrieved from http://mertus.org
  • Miller, J. L. (1994). On the internal structure of phonetic categories: A progress report. Cognition, 50(1), 271–285. doi: 10.1016/0010-0277(94)90031-0
  • Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among some English consonants. The Journal of the Acoustical Society of America, 27(2), 338–352. doi: 10.1121/1.1907526
  • Minicucci, D., Guediche, S., & Blumstein, S. E. (2013). An fMRI examination of the effects of acoustic-phonetic and lexical competition on access to the lexical-semantic network. Neuropsychologia, 51(10), 1980–1988. doi: 10.1016/j.neuropsychologia.2013.06.016
  • Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton, FL: CRC Press.
  • Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59(4), 475–494. doi: 10.1016/j.jml.2007.11.006
  • Myers, E. B. (2007). Dissociable effects of phonetic competition and category typicality in a phonetic categorization task: An fMRI investigation. Neuropsychologia, 45(7), 1463–1473. doi: 10.1016/j.neuropsychologia.2006.11.005
  • Myers, E. B., & Blumstein, S. E. (2008). The neural bases of the lexical effect: An fMRI investigation. Cerebral Cortex, 18(2), 278–288. doi: 10.1093/cercor/bhm053
  • Myers, E. B., Blumstein, S. E., Walsh, E., & Eliassen, J. (2009). Inferior frontal regions underlie the perception of phonetic category invariance. Psychological Science, 20(7), 895–903. doi: 10.1111/j.1467-9280.2009.02380.x
  • Myers, E. B., & Swan, K. (2012). Effects of category learning on neural sensitivity to non-native phonetic categories. Journal of Cognitive Neuroscience, 24(8), 1695–1708. doi: 10.1162/jocn_a_00243
  • Nixon, P., Lazarova, J., Hodinott-Hill, I., Gough, P., & Passingham, R. (2004). The inferior frontal gyrus and phonological processing: An investigation using rTMS. Journal of Cognitive Neuroscience, 16(2), 289–300. doi: 10.1162/089892904322984571
  • Obleser, J., Wise, R. J. S., Dresner, M. A., & Scott, S. K. (2007). Functional integration across brain regions improves speech perception under adverse listening conditions. Journal of Neuroscience, 27(9), 2283–2289. doi: 10.1523/JNEUROSCI.4663-06.2007
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4
  • Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E., … Chang, E. F. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251. doi: 10.1371/journal.pbio.1001251
  • Peramunage, D., Blumstein, S. E., Myers, E. B., Goldrick, M., & Baese-Berk, M. (2011). Phonological neighborhood effects in spoken word production: An fMRI study. Journal of Cognitive Neuroscience, 23(3), 593–603. doi: 10.1162/jocn.2010.21489
  • Pisoni, D. B., & Tash, J. (1974). Reaction times to comparisons within and across phonetic categories. Perception & Psychophysics, 15(2), 285–290. doi: 10.3758/BF03213946
  • Poldrack, R. A., Temple, E., Protopapas, A., Nagarajan, S., Tallal, P., Merzenich, M., & Gabrieli, J. D. (2001). Relations between the neural bases of dynamic auditory processing and phonological processing: Evidence from fMRI. Journal of Cognitive Neuroscience, 13(5), 687–697. doi: 10.1162/089892901750363235
  • Prabhakaran, R., Blumstein, S. E., Myers, E. B., Hutchison, E., & Britton, B. (2006). An event-related fMRI investigation of phonological–lexical competition. Neuropsychologia, 44(12), 2209–2221. doi: 10.1016/j.neuropsychologia.2006.05.025
  • Raettig, T., & Kotz, S. A. (2008). Auditory processing of different types of pseudo-words: An event-related fMRI study. Neuroimage, 39(3), 1420–1428. doi: 10.1016/j.neuroimage.2007.09.030
  • Ranaweera, R. D., Kwon, M., Hu, S., Tamer, G. G., Luh, W.-M., & Talavage, T. M. (2016). Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex. Hearing Research, 331, 57–68. doi: 10.1016/j.heares.2015.09.017
  • Righi, G., Blumstein, S. E., Mertus, J., & Worden, M. S. (2010). Neural systems underlying lexical competition: An eye tracking and fMRI study. Journal of Cognitive Neuroscience, 22(2), 213–224. doi: 10.1162/jocn.2009.21200
  • Rogers, J. C., & Davis, M. H. (2017). Inferior frontal cortex contributions to the recognition of spoken words and their constituent speech sounds. Journal of Cognitive Neuroscience, 29(5), 919–936. doi: 10.1162/jocn_a_01096
  • Saad, Z. S., & Reynolds, R. C. (2012). Suma. Neuroimage, 62(2), 768–773. doi: 10.1016/j.neuroimage.2011.09.016
  • Schwartze, M., & Kotz, S. A. (2016). Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain and Language, 161, 28–32. doi: 10.1016/j.bandl.2015.08.005
  • Scott, S. K., Rosen, S., Lang, H., & Wise, R. J. (2006). Neural correlates of intelligibility in speech investigated with noise vocoded speech—a positron emission tomography study. The Journal of the Acoustical Society of America, 120(2), 1075–1083. doi: 10.1121/1.2216725
  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging.
  • Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634. doi: 10.1126/science.7777863
  • Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94(26), 14792–14797. doi: 10.1073/pnas.94.26.14792
  • Turkeltaub, P. E., & Branch Coslett, H. (2010). Localization of sublexical speech perception components. Brain and Language, 114(1), 1–15. doi: 10.1016/j.bandl.2010.03.008
  • Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329–338. doi: 10.1016/S0896-6273(01)00359-2
  • Wild, C. J., Davis, M. H., & Johnsrude, I. S. (2012). Human auditory cortex is sensitive to the perceived clarity of speech. NeuroImage, 60(2), 1490–1502. doi: 10.1016/j.neuroimage.2012.01.035
  • Xie, X., & Myers, E. B. (2018). LIFG sensitivity to phonetic competition in receptive language processing: A comparison of clear and conversational speech. Journal of Cognitive Neuroscience, 30(3), 267–280. doi: 10.1162/jocn_a_01208
  • Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6(1), 21–30. doi: 10.1093/cercor/6.1.21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.