5,364
Views
2
CrossRef citations to date
0
Altmetric
REGULAR ARTICLES

A deep learning account of how language affects thought

ORCID Icon, ORCID Icon & ORCID Icon
Pages 499-508 | Received 11 Mar 2021, Accepted 25 Oct 2021, Published online: 15 Nov 2021

References

  • Boroditsky, L. (2001). Does language shape thought? Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43(1), 1–22. https://doi.org/10.1006/cogp.2001.0748
  • Boroditsky, L., & L. A. Schmidt (2000). Sex, syntax, and semantics. Proceedings of the Annual Meeting of the Cognitive Science Society, 22. Retrieved from https://escholarship.org/uc/item/0jt9w8zf
  • Cadieu, C. F., H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, & J. J. DiCarlo (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 10(12), 1003963. https://doi.org/10.1371/journal.pcbi.1003963www.ploscompbiol.org.
  • Chen, T., S. Kornblith, M. Norouzi, & G. Hinton (2020). A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, PMLR (pp. 1597–1607). http://arxiv.org/abs/2002.05709.
  • Choi, S., & M. Bowerman (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41(1-3), 83–121. https://doi.org/10.1016/0010-0277(91)90033-Z
  • Davis, T., & B. C. Love (2010). Memory for category information is idealized through contrast with competing options. Psychological Science, 21(2), 234–242. https://doi.org/10.1177/0956797609357712
  • Davis, T., B. C. Love, & A. R. Preston (2012a). Learning the exception to the rule: Model-based FMRI reveals specialized representations for surprising category members. Cerebral Cortex, 22(2), 260–273. https://doi.org/10.1093/cercor/bhr036
  • Davis, T., B. C. Love, & A. R. Preston (2012b). Striatal and hippocampal entropy and recognition signals in category learning: Simultaneous processes revealed by model-based fMRI. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 821–839. https://doi.org/10.1037/a0027865
  • Devereux, B. J., A. Clarke, & L. K. Tyler (2018). Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway. Scientific Reports, 8(1), 10636. https://doi.org/10.1038/s41598-018-28865-1
  • Devlin, J., M. W. Chang, K. Lee, & K. Toutanova (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019 – 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – Proceedings of the Conference (Vol. 1, pp. 4171–4186). http://arxiv.org/abs/1810.04805
  • Firestone, C., & B. J. Scholl (2015). Cognition does not affect perception: Evaluating the evidence for top-down effects. Behavioral and Brain Sciences, 39, 1–77. https://doi.org/10.1017/S0140525X15000965, e229
  • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. https://doi.org/10.1007/BF00344251
  • Gleitman, L., & A. Papafragou (2012). New perspectives on language and thought. In The Oxford Handbook of Thinking and Reasoning. Oxford University Press. doi: 10.1093/oxfordhb/9780199734689.013.0028.
  • Goldstone, R. L., & A. T. Hendrickson (2010). Categorical perception. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 69–78. https://doi.org/10.1002/wcs.26
  • Güçlü, U., & M. A. van Gerven (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014. https://doi.org/10.1523/JNEUROSCI.5023-14.2015
  • Hebart, M. N., C. Y. Zheng, F. Pereira, & C. I. Baker (2020). Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nature Human Behaviour, 4(11), 1173–1185. https://doi.org/10.1038/s41562-020-00951-3
  • Hornsby, A. N., T. Evans, P. S. Riefer, R. Prior, & B. C. Love (2020). Conceptual organization is revealed by consumer activity patterns. Computational Brain & Behavior, 3(2), 162–173. https://doi.org/10.1007/s42113-019-00064-9
  • Klemfuss, N., W. Prinzmetal, & R. B. Ivry (2012). How does language change perception: A cautionary note. Frontiers in Psychology, 3, 78. https://doi.org/10.3389/fpsyg.2012.00078
  • Kriegeskorte, N., M. Mur, & P. Bandettini (2008). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. https://doi.org/10.3389/neuro.01.016.2008
  • Kubilius, J., M. Schrimpf, K. Kar, R. Rajalingham, H. Hong, N. J. Majaj, E. B. Issa, P. Bashivan, J. Prescott-Roy, K. Schmidt, A. Nayebi, D. Bear, D. L. Yamins, & J. J. DiCarlo (2019). Brain-like object recognition with high-performing shallow recurrent ANNs. https://arxiv.org/abs/1909.06161v2.
  • Li, P., & L. Gleitman (2002). Turning the tables: Language and spatial reasoning. Cognition, 83(3), 265–294. https://doi.org/10.1016/S0010-0277(02)00009-4
  • Love, B. C., & T. M. Gureckis (2007). Models in search of a brain. Cognitive, Affective & Behavioral Neuroscience, 7(2), 90–108. https://doi.org/10.3758/CABN.7.2.90
  • Love, B. C., D. L. Medin, & T. M. Gureckis (2004). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309–332. https://doi.org/10.1037/0033-295X.111.2.309
  • Luo, X., B. D. Roads, & B. C. Love (2021). The costs and benefits of goal-directed attention in deep convolutional neural networks. Computational Brain & Behavior: 1–18. https://doi.org/10.1007/s42113-021-00098-y.
  • Lupyan, G. (2012). What do words do? Toward a theory of language-augmented thought. Psychology of Learning and Motivation, 57, 255–297. https://doi.org/10.1016/B978-0-12-394293-7.00007-8
  • Lupyan, G., R. Abdel Rahman, L. Boroditsky, & A. Clark (2020). Effects of language on visual perception. Trends in Cognitive Sciences, 24(11), 930–944. https://doi.org/10.1016/j.tics.2020.08.005
  • Mack, M. L., B. C. Love, & A. R. Preston (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113(46), 13203–13208. https://doi.org/10.1073/pnas.1614048113
  • Mack, M. L., B. C. Love, & A. R. Preston (2018). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680(44), 31–38. https://doi.org/10.1016/j.neulet.2017.07.061
  • Mack, M. L., A. R. Preston, & B. C. Love (2020). Ventromedial prefrontal cortex compression during concept learning. Nature Communications, 11(1), 46. https://doi.org/10.1038/s41467-019-13930-8
  • Markman, A. B., & B. H. Ross (2003). Category use and category learning. Psychological Bulletin, 129(4), 592–613. https://doi.org/10.1037/0033-2909.129.4.592
  • Mehrer, J., C. J. Spoerer, E. C. Jones, N. Kriegeskorte, & T. C. Kietzmann (2021). An ecologically motivated image dataset for deep learning yields better models of human vision. Proceedings of the National Academy of Sciences, 118(8), e2011417118. https://doi.org/10.1073/pnas.2011417118
  • Mikolov, T., K. Chen, G. Corrado, & J. Dean (2013). Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013 – Workshop Track Proceedings, International Conference on Learning Representations (ICLR).
  • Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41. https://doi.org/10.1145/219717.219748
  • Nixon, J. S. (2020). Of mice and men: Speech sound acquisition as discriminative learning from prediction error, not just statistical tracking. Cognition, 197: 104081. https://doi.org/10.1016/j.cognition.2019.104081
  • Norman, K., & R. O'Reilly (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary learning systems approach. Psychological Review, 110(4), 6–11. https://doi.org/10.1037/0033-295X.110.4.611
  • Özgen, E., & I. R. Davies (2002). Acquisition of categorical color perception: a perceptual learning approach to the linguistic relativity hypothesis. Journal of Experimental Psychology: General, 131(4), 477–493. https://doi.org/10.1037/0096-3445.131.4.477
  • Pennington, J., R. Socher, & C. D. Manning. (2014). GloVe: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ({EMNLP}), 1532–1543. https://doi.org/10.3115/v1/D14-1162
  • Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, & L. Zettlemoyer. (2018). Deep Contextualized Word Representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/N18-1202
  • Ramscar, M., P. Hendrix, B. Love, & R. H. Baayen (2013). Learning is not decline: the mental lexicon as a window into cognition across the lifespan. The Mental Lexicon, 8(3), 450–481. https://doi.org/10.1075/ml
  • Ramscar, M., D. Yarlett, M. Dye, K. Denny, & K. Thorpe (2010). The effects of feature-label-order and their implications for symbolic learning. Cognitive Science, 34(6), 909–957. https://doi.org/10.1111/(ISSN)1551-6709
  • Roads, B. D., & B. C. Love (2020). Enriching imagenet with human similarity judgments and psychological embeddings. ArXiv http://arxiv.org/abs/2011.11015.
  • Roberson, D., H. Pak, & J. R. Hanley (2008). Categorical perception of colour in the left and right visual field is verbally mediated: Evidence from Korean. Cognition, 107(2), 752–762. https://doi.org/10.1016/j.cognition.2007.09.001
  • Rogers, T. T., & J. L. McClelland (2004). A parallel distributed processing approach. MIT Press.
  • Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, & L. Fei-Fei (2014). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, & L. Fei-Fei (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Saxe, A. M., J. L. McClelland, & S. Ganguli (2019). A mathematical theory of semantic development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23), 11537–11546. https://doi.org/10.1073/pnas.1820226116
  • Schyns, P. G., R. L. Goldstone, & J. P. Thibaut (1998). The development of features in object concepts. Behavioral and Brain Sciences, 21(1), 1–17. https://doi.org/10.1017/S0140525X98000107
  • Shepard, R. N., C. L. Hovland, & H. M. Jenkins (1961). Learning and memorization of classifications. Psychological Monographs, 75(13), 1. https://doi.org/10.1037/h0093825
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, & A. Rabinovich (2015). Going deeper with convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 7, pp. 1–9). IEEE Computer Society.
  • Tanaka, J. W., & M. Taylor (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23(3), 457–482. https://doi.org/10.1016/0010-0285(91)90016-H
  • Waxman, S. R., & D. B. Markow (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29(3), 257–302. https://doi.org/10.1006/cogp.1995.1016
  • Wills, A. J., & E. M. Pothos (2012). On the adequacy of current empirical evaluations of formal models of categorization. Psychological Bulletin, 138(1), 102–125. https://doi.org/10.1037/a0025715
  • Winawer, J., N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, & L. Boroditsky (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7780–7785. https://doi.org/10.1073/pnas.0701644104
  • Yamauchi, T., B. C. Love, & A. B. Markman (2002). Learning nonlinearly separable categories by inference and classification. Journal of Experimental Psychology Learning, Memory, and Cognition, 28(3), 585–593. https://doi.org/10.1037/0278-7393.28.3.585
  • Yamauchi, T., & A. B. Markman (1998). Category learning by inference and classification. Journal of Memory and Language, 39, 124–149. https://doi.org/10.1006/jmla.1998.2566
  • Yamins, D. L. K., H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, & J. J. DiCarlo (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8619–8624. https://doi.org/10.1073/pnas.1403112111