1,639
Views
0
CrossRef citations to date
0
Altmetric
REGULAR ARTICLES

Syntactic comprehension priming and lexical boost effects in older adults

ORCID Icon & ORCID Icon
Pages 105-120 | Received 20 Oct 2021, Accepted 05 Jun 2022, Published online: 23 Jun 2022

References

  • Arai, M., Van Gompel, R. P., & Scheepers, C. (2007). Priming ditransitive structures in comprehension. Cognitive Psychology, 54(3), 218–250. https://doi.org/10.1016/j.cogpsych.2006.07.001
  • Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136–R140. https://doi.org/10.1016/j.cub.2009.12.014
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
  • Bezdicek, O., Stepankova, H., Novakova, L. M., & Kopecek, M. (2016). Toward the processing speed theory of activities of daily living in healthy aging: Normative data of the functional activities questionnaire. Aging Clinical and Experimental Research, 28(2), 239–247. https://doi.org/10.1007/s40520-015-0413-5
  • Bock, J. K. (1986). Syntactic persistence in language production. Cognitive Psychology, 18(3), 355–387. https://doi.org/10.1016/0010-0285(86)90004-6
  • Bock, K., & Griffin, Z. M. (2000). The persistence of structural priming: Transient activation or implicit learning? Journal of Experimental Psychology: General, 129(2), 177–192. https://doi.org/10.1037/0096-3445.129.2.177
  • Boller, B., Mellah, S., Ducharme-Laliberté, G., & Belleville, S. (2017). Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults. Brain Imaging and Behavior, 11(2), 304–317. https://doi.org/10.1007/s11682-016-9621-7
  • Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(5), P223–P233. https://doi.org/10.1093/geronb/60.5.P223
  • Bott, N. T., Bettcher, B. M., Yokoyama, J. S., Frazier, D. T., Wynn, M., Karydas, A., Yaffe, K., & Kramer, J. H. (2017). Youthful processing speed in older adults: Genetic, biological, and behavioral predictors of cognitive processing speed trajectories in aging. Frontiers in Aging Neuroscience, 9(55). https://doi.org/10.3389/fnagi.2017.00055.
  • Brébion, G. (2003). Working memory, language comprehension, and aging: Four experiments to understand the deficit. Experimental Aging Research, 29(3), 269–301. https://doi.org/10.1080/03610730303725
  • Burke, D. M., & Shafto, M. A. (2008). Language and aging. Psychology Press.
  • Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
  • Campbell, K. L., Samu, D., Davis, S. W., Geerligs, L., Mustafa, A., & Tyler, L. K. (2016). Robust resilience of the frontotemporal syntax system to aging. Journal of Neuroscience, 36(19), 5214–5227. https://doi.org/10.1523/JNEUROSCI.4561-15.2016
  • Caplan, D., & Waters, G. (2005). The relationship between age, processing speed, working memory capacity, and language comprehension. Memory, 13(3–4), 403–413. https://doi.org/10.1080/09658210344000459
  • Chang, F. (2008). Implicit learning as a mechanism of language change. Walter de Gruyter GmbH & Co. KG.
  • Chang, F., Janciauskas, M., & Fitz, H. (2012). Language adaptation and learning: Getting explicit about implicit learning. Language and Linguistics Compass, 6(5), 259–278. https://doi.org/10.1002/lnc3.337
  • Cho-Reyes, S., J. E. Mack, & Thompson, C. K. (2016). Grammatical encoding and learning in agrammatic aphasia: Evidence from structural priming. Journal of Memory and Language, 91, 202–218. https://doi.org/10.1016/j.jml.2016.02.004
  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466. https://doi.org/10.1016/S0022-5371(80)90312-6
  • Daneman, M., & Hannon, B. (2007). What do working memory span tasks like reading span really measure. The Cognitive Neuroscience of Working Memory, 21–42. https://doi.org/10.1093/acprof:oso/9780198570394.001.0001
  • DeCaro, R., Peelle, J. E., Grossman, M., & Wingfield, A. (2016). The two sides of sensory–cognitive interactions: Effects of age, hearing acuity, and working memory span on sentence comprehension. Frontiers in Psychology, 7(236). https://doi.org/10.3389/fpsyg.2016.00236.
  • DeDe, G., Caplan, D., Kemtes, K., & Waters, G. (2004). The relationship between age, verbal working memory, and language comprehension. Psychology and Aging, 19(4), 601 –616. https://doi.org/10.1037/0882-7974.19.4.601
  • Drozdick, L. W., Raiford, S. E., Wahlstrom, D., & Weiss, L. G. (2018). The Wechsler adult intelligence scale – fourth edition and the Wechsler memory scale – fourth edition. The Guilford Press.
  • Ebaid, D., Crewther, S. G., MacCalman, K., Brown, A., & Crewther, D. P. (2017). Cognitive processing speed across the lifespan: Beyond the influence of motor speed. Frontiers in Aging Neuroscience, 9(62). https://doi.org/10.3389/fnagi.2017.00062.
  • Fine, A. B., Jaeger, T. F., Farmer, T. A., & Qian, T. (2013). Rapid expectation adaptation during syntactic comprehension. PloS One, 8(10), Article e77661. https://doi.org/10.1371/journal.pone.0077661
  • Fodor, J. A. (1983). The modularity of mind. MIT press.
  • Friedman, D., Nessler, D., Cycowicz, Y. M., & Horton, C. (2009). Development of and change in cognitive control: A comparison of children, young adults, and older adults. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 91–102. https://doi.org/10.3758/CABN.9.1.91
  • Giavazzi, M., Sambin, S., de Diego-Balaguer, R., Le Stanc, L., Bachoud-Lévi, A.-C., & Jacquemot, C. (2018). Structural priming in sentence comprehension: A single prime is enough. PloS One, 13(4), Article e0194959. https://doi.org/10.1371/journal.pone.0194959
  • Goral, M., Spiro III, A., Albert, M. L., Obler, L. K., & Connor, L. T. (2007). Change in lexical retrieval skills in adulthood. The Mental Lexicon, 2(2), 215–238. https://doi.org/10.1075/ml
  • Gronau, Q. F., Singmann, H., & Wagenmakers, E. -J. (2017). bridgesampling: An R package for estimating normalizing constants. arXiv preprint arXiv:1710.08162.
  • Grossman, M., Cooke, A., DeVita, C., Alsop, D., Detre, J., Chen, W., & Gee, J. (2002). Age-related changes in working memory during sentence comprehension: An fmri study. NeuroImage, 15(2), 302–317. https://doi.org/10.1006/nimg.2001.0971
  • Hardy, S. M., Messenger, K., & Maylor, E. A. (2017). Aging and syntactic representations: Evidence of preserved syntactic priming and lexical boost. Psychology and Aging, 32(6), 588–596. https://doi.org/10.1037/pag0000180
  • Hardy, S. M., Segaert, K., & Wheeldon, L. (2020). Healthy aging and sentence production: Disrupted lexical access in the context of intact syntactic planning. Frontiers in Psychology, 11, 257. https://doi.org/10.3389/fpsyg.2020.00257
  • Hardy, S. M., Wheeldon, L., & Segaert, K. (2020). Structural priming is determined by global syntax rather than internal phrasal structure: Evidence from young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(4), 720–740. http://dx.doi.org/10.1037/xlm0000754
  • Hartley, J. T., Stojack, C. C., Mushaney, T. J., Annon, T., & Lee, D. W. (1994). Reading speed and prose memory in older and younger adults. Psychology and Aging, 9(2, 216–223. https://doi.org/10.1037/0882-7974.9.2.216
  • Hartsuiker, R. J., Bernolet, S., Schoonbaert, S., Speybroeck, S., & Vanderelst, D. (2008). Syntactic priming persists while the lexical boost decays: Evidence from written and spoken dialogue. Journal of Memory and Language, 58(2), 214–238. https://doi.org/10.1016/j.jml.2007.07.003
  • Hering, A., Rautenberg, M., von Bloh, P., Schnitzspahn, K., Ballhausen, N., Ihle, A., Lagner, P., Kliegel, M., & Zinke, K. (2019). Examining the role of rehearsal in old–old adults' working memory. European Journal of Ageing, 16(1), 63–71. https://doi.org/10.1007/s10433-018-0461-8
  • Heyselaar, E., Segaert, K., Walvoort, S. J., Kessels, R. P., & Hagoort, P. (2017). The role of nondeclarative memory in the skill for language: Evidence from syntactic priming in patients with amnesia. Neuropsychologia, 101, 97–105. https://doi.org/10.1016/j.neuropsychologia.2017.04.033
  • Heyselaar, E., Wheeldon, L., & Segaert, K. (2021). Structural priming is supported by different components of nondeclarative memory: Evidence from priming across the lifespan. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(5), 820–837. https://doi.org/10.1037/xlm0000955
  • Hicks, R. E., Alexander, V. E., & Bahr, M. (2018). Explicit and implicit memory loss in aging. International Journal of Psychological Studies, 10(3), 40–52. https://doi.org/10.5539/ijps.v10n3p40.
  • Jackson, J. J., Hill, P. L., Payne, B. R., Roberts, B. W., & Stine-Morrow, E. A. (2012). Can an old dog learn (and want to experience) new tricks? Cognitive training increases openness to experience in older adults. Psychology and Aging, 27(2), 286–292. https://doi.org/10.1037/a0025918
  • Jacobs, C. L., Cho, S. -J., & Watson, D. G. (2019). Self-priming in production: Evidence for a hybrid model of syntactic priming. Cognitive Science, 43(7), Article e12749. https://doi.org/10.1111/cogs.2019.43.issue-7
  • Jaeger, T. F., & Snider, N. E. (2013). Alignment as a consequence of expectation adaptation: Syntactic priming is affected by the prime's prediction error given both prior and recent experience. Cognition, 127(1), 57–83. https://doi.org/10.1016/j.cognition.2012.10.013
  • Jelicic, M. (1996). Effects of ageing on different explicit and implicit memory tasks. European Journal of Cognitive Psychology, 8(3), 225–234. https://doi.org/10.1080/095414496383068
  • Joyal, M., Groleau, C., Bouchard, C., Wilson, M. A., & Fecteau, S. (2020). Semantic processing in healthy aging and Alzheimer's disease: A systematic review of the N400 differences. Brain Sciences, 10(11), 770. https://doi.org/10.3390/brainsci10110770
  • Kaschak, M. P., Kutta, T. J., & Schatschneider, C. (2011). Long-term cumulative structural priming persists for (at least) one week. Memory & Cognition, 39(3), 381–388. https://doi.org/10.3758/s13421-010-0042-3
  • Kassambara, A., & Kassambara, M. A. (2019). Package ‘ggcorrplot’. R Package Version 0.1, 3(3). https://github.com/kassambara/ggcorrplot/
  • Kemper, S., & Anagnopoulos, C. (1989). Language and aging. Annual Review of Applied Linguistics, 10, 37–50. https://doi.org/10.1017/S0267190500001203
  • Kemper, S., Rash, S., Kynette, D., & Norman, S. (1990). Telling stories: The structure of adults' narratives. European Journal of Cognitive Psychology, 2(3), 205–228. https://doi.org/10.1080/09541449008406205
  • Kemtes, K. A., & Kemper, S. (1997). Younger and older adults' on-line processing of syntactically ambiguous sentences. Psychology and Aging, 12(2), 362–371. https://doi.org/10.1037/0882-7974.12.2.362
  • Kim, D., Mishra, S., Wang, Z., & Singh, S. N. (2016). Insidious effects of syntactic complexity: Are ads targeting older adults too complex to remember? Journal of Advertising, 45(4), 509–518. https://doi.org/10.1080/00913367.2016.1262301
  • King, J. W., & Kutas, M. (1995). Do the waves begin to waver? Erp studies of language processing in the elderly. In Advances in psychology (Vol. 110, pp. 314–344). Elsevier.
  • Kleiman, E. (2017). EMAtools: Data management tools for real-time monitoring/ecological momentary assessment data. R package version, 0.1.3.
  • Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-1
  • Kynette, D., & Kemper, S. (1986). Aging and the loss of grammatical forms: A cross-sectional study of language performance. Language and Communication, 6(1–2), 65–72. https://doi.org/10.1016/0271-5309(86)90006-6
  • Ledoux, K., Traxler, M. J., & Swaab, T. Y. (2007). Syntactic priming in comprehension: Evidence from event-related potentials. Psychological Science, 18(2), 135–143. https://doi.org/10.1111/j.1467-9280.2007.01863.x
  • Lee, M. D., & Wagenmakers, E. -J. (2014). Bayesian cognitive modeling: A practical course. Cambridge university press.
  • Lenneberg, E. H. (1967). The biological foundations of language. Hospital Practice, 2(12), 59–67. https://doi.org/10.1080/21548331.1967.11707799
  • Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10(10), 447–454. https://doi.org/10.1016/j.tics.2006.08.007
  • Liu, R., Patel, B. N., & Kwon, M. (2017). Age-related changes in crowding and reading speed. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-016-0028-x
  • Lüdecke, D. (2016). SjPlot: Data visualization for statistics in social science; 2018. R Package Version, 2(1). https://github.com/strengejacke/sjPlot
  • MacKay, A. J., Connor, L. T., Albert, M. L., & Obler, L. K. (2002). Noun and verb retrieval in healthy aging. Journal of the International Neuropsychological Society, 8(6), 764–770. https://doi.org/10.1017/S1355617702860040
  • Malhotra, G., Pickering, M., Branigan, H., & Bednar, J. A. (2008). On the persistence of structural priming: Mechanisms of decay and influence of word-forms. In Proceedings of the annual meeting of the cognitive science society (Vol. 30).
  • Malyutina, S., Laurinavichyute, A., Terekhina, M., & Lapin, Y. (2018). No evidence for strategic nature of age-related slowing in sentence processing. Psychology and Aging, 33(7), 1045–1059. https://doi.org/10.1037/pag0000302
  • Manouilidou, C., & Almeida, R. G. (2009). Canonicity in argument realization and verb semantic deficits in Alzheimer's disease. In Process (pp. 123–150). De Gruyter Mouton.
  • Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798–817. https://doi.org/10.3758/PBR.16.5.798
  • Meguro, Y., Fujii, T., Yamadori, A., Tsukiura, T., Suzuki, K., Okuda, J., & Osaka, M. (2000). The nature of age-related decline on the reading span task. Journal of Clinical and Experimental Neuropsychology, 22(3), 391–398. https://doi.org/10.1076/1380-3395(200006)22:3;1-V;FT391
  • Norman, S., Kemper, S., & Kynette, D. (1992). Adults' reading comprehension: Effects of syntactic complexity and working memory. Journal of Gerontology, 47(4), P258–P265. https://doi.org/10.1093/geronj/47.4.P258
  • Oberauer, K. (2019). Is rehearsal an effective maintenance strategy for working memory?. Trends in Cognitive Sciences, 23(9), 798–809. https://doi.org/10.1016/j.tics.2019.06.002
  • Peelle, J. E. (2019). Language and aging. In The oxford handbook of neurolinguistics (pp. 295–216). Oxford University Press Oxford.
  • Peirce, J., & MacAskill, M. (2018). Building experiments in psychoPy. Sage.
  • Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., & Wuertz, D. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14. https://r-forge.r-project.org/projects/returnanalytics/
  • Pichora-Fuller, M. K. (2003). Processing speed and timing in aging adults: psychoacoustics, speech perception, and comprehension. International Journal of Audiology, 42(sup1), 59–67. https://doi.org/10.3109/14992020309074625
  • Pickering, M. J., & Branigan, H. P. (1998). The representation of verbs: Evidence from syntactic priming in language production. Journal of Memory and Language, 39(4), 633–651. https://doi.org/10.1006/jmla.1998.2592
  • Pliatsikas, C., Veríssimo, J., Babcock, L., Pullman, M. Y., Glei, D. A., Weinstein, M., Goldman, N., & Ullman, M. T. (2019). Working memory in older adults declines with age, but is modulated by sex and education. Quarterly Journal of Experimental Psychology, 72(6), 1308–1327. https://doi.org/10.1177/1747021818791994
  • Poulisse, C., Wheeldon, L., & Segaert, K. (2019). Evidence against preserved syntactic comprehension in healthy aging. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(12), 2290–2308. https://doi.org/10.1037/xlm0000707
  • Prolific (2014). Prolific. Retrieved February 22, 2021, from https://www.prolific.co/.
  • PsychoPy/Pavlovia (2021). Pavlovia: Where behaviour is studied. Open SCience Tools Ltd. Retrieved October 30, 2020, from https://pavlovia.org/.
  • Qualtrics (2021). Qualtrics survey software. Qualtrics, Provo, Utah, USA. Retrieved October 30, 2020, from https://www.qualtrics.com.
  • Raissi, R., Hedayat, N., & Kazemirad, F. (2020). Syntactic priming effects and their underlying mechanisms in language production and comprehension. Theory and Practice in Language Studies, 10(11), 1370–1375. https://doi.org/10.17507/tpls.1011.04
  • Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., & Baayen, H. (2014). The myth of cognitive decline: Non-linear dynamics of lifelong learning. Topics in Cognitive Science, 6(1), 5–42. https://doi.org/10.1111/tops.12078
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rieckmann, A., & Bäckman, L. (2009). Implicit learning in aging: Extant patterns and new directions. Neuropsychology Review, 19(4), 490–503. https://doi.org/10.1007/s11065-009-9117-y
  • Salthouse, T. A. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2(3), 179–183. https://doi.org/10.1111/j.1467-9280.1991.tb00127.x
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. https://doi.org/10.1037/0033-295X.103.3.403
  • Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult age differences in working memory. Developmental Psychology, 27(5), 763–776. https://doi.org/10.1037/0012-1649.27.5.763
  • Stine-Morrow, E. A. (2007). The dumbledore hypothesis of cognitive aging. Current Directions in Psychological Science, 16(6), 295–299. https://doi.org/10.1111/j.1467-8721.2007.00524.x
  • Stine-Morrow, E. A., Miller, L. M. S., & Hertzog, C. (2006). Aging and self-regulated language processing. Psychological Bulletin, 132(4), 582–606. https://doi.org/10.1037/0033-2909.132.4.582
  • Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778–786. https://doi.org/10.1037/a0014341
  • Sung, J. E., Yoo, J. K., Lee, S. E., & Eom, B. (2017). Effects of age, working memory, and word order on passive-sentence comprehension: Evidence from a verb-final language. International Psychogeriatrics, 29(6), 939–948. https://doi.org/10.1017/S1041610217000047
  • Thothathiri, M., & Snedeker, J. (2008). Give and take: Syntactic priming during spoken language comprehension. Cognition, 108(1), 51–68. https://doi.org/10.1016/j.cognition.2007.12.012
  • Tooley, K. M. (2020). Contrasting mechanistic accounts of the lexical boost. Memory & Cognition, 48(5), 815–838. https://doi.org/10.3758/s13421-020-01019-3
  • Tooley, K. M., Pickering, M. J., & Traxler, M. J. (2019). Lexically-mediated syntactic priming effects in comprehension: Sources of facilitation. Quarterly Journal of Experimental Psychology, 72(9), 2176–2196. https://doi.org/10.1177/1747021819834247
  • Tooley, K. M., & Traxler, M. J. (2010). Syntactic priming effects in comprehension: A critical review. Language and Linguistics Compass, 4(10), 925–937. https://doi.org/10.1111/j.1749-818X.2010.00249.x
  • Tooley, K. M., Traxler, M. J., & Swaab, T. Y. (2009). Electrophysiological and behavioral evidence of syntactic priming in sentence comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 19–45. https://doi.org/10.1037/a0013984
  • Traxler, M. J. (2008). Lexically independent priming in online sentence comprehension. Psychonomic Bulletin & Review, 15(1), 149–155. https://doi.org/10.3758/PBR.15.1.149
  • Traxler, M. J., Tooley, K. M., & Pickering, M. J. (2014). Syntactic priming during sentence comprehension: Evidence for the lexical boost. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 905–918. https://doi.org/10.1037/a0036377
  • UNESCO Institute for Statistics (2012). International standard classification of education: ISCED 2011. Comparative Social Research, 30. https://doi.org/10.15220/978-92-9189-123-8-en
  • van Boxtel, W., & Lawyer, L. (2021). Sentence comprehension in ageing and alzheimer's disease. Language and Linguistics Compass, 15(6), Article e12430. https://doi.org/10.1111/lnc3.12430
  • Verhaeghen, P. (2003). Aging and vocabulary score: A meta-analysis. Psychology and Aging, 18(2), 332–339. https://doi.org/10.1037/0882-7974.18.2.332
  • Vonk, J. M., Higby, E., Nikolaev, A., Cahana-Amitay, D., A. Spiro III, Albert, M. L., & Obler, L. K. (2020). Demographic effects on longitudinal semantic processing, working memory, and cognitive speed. The Journals of Gerontology: Series B, 75(9), 1850–1862. https://doi.org/10.1093/geronb/gbaa080
  • Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105
  • Ward, E., Berry, C., & Shanks, D. (2013). Age effects on explicit and implicit memory. Frontiers in Psychology, 4, article 639. https://doi.org/10.3389/fpsyg.2013.00639
  • Ward, E. V., Berry, C. J., Shanks, D. R., Moller, P. L., & Czsiser, E. (2020). Aging predicts decline in explicit and implicit memory: A life-span study. Psychological Science, 31(9), 1071–1083. https://doi.org/10.1177/0956797620927648
  • Waters, G. S., & Caplan, D. (1996). The measurement of verbal working memory capacity and its relation to reading comprehension. The Quarterly Journal of Experimental Psychology Section A, 49(1), 51–79. https://doi.org/10.1080/713755607
  • Waters, G. S., & Caplan, D. (2001). Age, working memory, and on-line syntactic processing in sentence comprehension. Psychology and Aging, 16(1), 128–144. https://doi.org/10.1037/0882-7974.16.1.128
  • Wechsler, D. (1955). Wechsler adult intelligence scale.
  • Wingfield, A., & Grossman, M. (2006). Language and the aging brain: Patterns of neural compensation revealed by functional brain imaging. Journal of Neurophysiology, 96(6), 2830–2839. https://doi.org/10.1152/jn.00628.2006
  • Wingfield, A., & Tun, P. A. (2001). Spoken language comprehension in older adults: Interactions between sensory and cognitive change in normal aging. In Seminars in hearing (Vol. 22, pp. 287–302).
  • Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., & Consortium, A. L., Aging Lexicon Consortium (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences, 23(8), 686–698. https://doi.org/10.1016/j.tics.2019.05.003
  • Yan, H., Martin, R. C., & Slevc, L. R. (2018). Lexical overlap increases syntactic priming in aphasia independently of short-term memory abilities: Evidence against the explicit memory account of the lexical boost. Journal of Neurolinguistics, 48, 76–89. https://doi.org/10.1016/j.jneuroling.2017.12.005
  • Zhu, Z., Wang, S., Xu, N., Li, M., & Yang, Y. (2019). Semantic integration declines independently of working memory in aging. Applied Psycholinguistics, 40(6), 1481–1494. https://doi.org/10.1017/S0142716419000341
  • Ziegler, J., & Snedeker, J. (2019). The use of syntax and information structure during language comprehension: Evidence from structural priming. Language, Cognition and Neuroscience, 34(3), 365–384. https://doi.org/10.1080/23273798.2018.1539757