172
Views
1
CrossRef citations to date
0
Altmetric
Regular Articles

Effects of unilateral anteromedial temporal lobe resections on event-related potentials when reading negative and neutral words

ORCID Icon, , , &
Pages 1365-1383 | Received 08 Mar 2022, Accepted 30 May 2023, Published online: 11 Jun 2023

References

  • Almeida, I., Soares, S. C., & Castelo-Branco, M. (2015). The distinct role of the amygdala, superior colliculus and pulvinar in processing of central and peripheral snakes. PLOS ONE, 10(6), e0129949. https://doi.org/10.1371/journal.pone.0129949
  • Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411(6835), https://doi.org/10.1038/35077083
  • Anderson, A. K., Spencer, D. D., Fulbright, R. K., & Phelps, E. A. (2000). Contribution of the anteromedial temporal lobes to the evaluation of facial emotion. Neuropsychology, 14(4), 526–536. https://doi.org/10.1037/0894-4105.14.4.526
  • Barrett, L. F., & Westlin, C. (2021). Chapter 2—navigating the science of emotion. In H. L. Meiselman (Hrsg.) (Ed.), Emotion measurement (second edition) (S. 39–84). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821124-3.00002-8
  • Bayer, M., Sommer, W., & Schacht, A. (2012). P1 and beyond: Functional separation of multiple emotion effects in word recognition. Psychophysiology, 49(7), 959–969. https://doi.org/10.1111/j.1469-8986.2012.01381.x
  • Bennion, K. A., Ford, J. H., Murray, B. D., & Kensinger, E. A. (2013). Oversimplification in the study of emotional memory. Journal of the International Neuropsychological Society, 19(9), 953–961. https://doi.org/10.1017/S1355617713000945
  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536. https://doi.org/10.1016/j.tics.2011.10.001
  • Bonelli, S. B., Powell, R. H. W., Yogarajah, M., Samson, R. S., Symms, M. R., Thompson, P. J., Koepp, M. J., & Duncan, J. S. (2010). Imaging memory in temporal lobe epilepsy: Predicting the effects of temporal lobe resection. Brain, 133(4), 1186–1199. https://doi.org/10.1093/brain/awq006
  • Buchanan, T. W., Denburg, N. L., Tranel, D., & Adolphs, R. (2001). Verbal and nonverbal emotional memory following unilateral amygdala damage. Learning & Memory, 8(6), 326–335. https://doi.org/10.1101/lm.40101
  • Buchanan, T. W., Tranel, D., & Adolphs, R. (2006). Memories for emotional autobiographical events following unilateral damage to medial temporal lobe. Brain, 129(1), 115–127. https://doi.org/10.1093/brain/awh672
  • Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or How to keep a good hemisphere down. Brain and Cognition, 30(1), 81–108. https://doi.org/10.1006/brcg.1996.0006
  • Citron, F. M. M. (2012). Neural correlates of written emotion word processing: A review of recent electrophysiological and hemodynamic neuroimaging studies. Brain and Language, 122(3), 211–226. https://doi.org/10.1016/j.bandl.2011.12.007
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
  • Ćurčić-Blake, B., Swart, M., & Aleman, A. (2012). Bidirectional information flow in frontoamygdalar circuits in humans: A dynamic causal modeling study of emotional associative learning. Cerebral Cortex, 22(2), 436–445. https://doi.org/10.1093/cercor/bhr124
  • Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain and Cognition, 135, 103569. https://doi.org/10.1016/j.bandc.2019.05.007
  • Doll, A., Wegrzyn, M., Benzait, A., Mertens, M., Woermann, F. G., Labudda, K., Bien, C. G., & Kissler, J. (2021). Whole-brain functional correlates of memory formation in mesial temporal lobe epilepsy. NeuroImage: Clinical, 31, 102723. https://doi.org/10.1016/j.nicl.2021.102723
  • Elsharkawy, A. E., Pannek, H., Woermann, F. G., Gyimesi, C., Hartmann, S., Aengenendt, J., Ogutu, T., Hoppe, M., Schulz, R., Pietilä, T. A., & Ebner, A. (2011). Apical temporal lobe resection; “tailored” hippocampus-sparing resection based on presurgical evaluation data. Acta Neurochirurgica, 153(2), 231–238. https://doi.org/10.1007/s00701-010-0734-2
  • Engel, J. V. N. P. Jr. (1993). Outcome with respect to epileptic seizures. In Surgical treatment of the epilepsies. Raven Press.
  • Flaisch, T., Häcker, F., Renner, B., & Schupp, H. T. (2011). Emotion and the processing of symbolic gestures: An event-related brain potential study. Social Cognitive and Affective Neuroscience, 6(1), 109–118. https://doi.org/10.1093/scan/nsq022
  • Framorando, D., Moses, E., Legrand, L., Seeck, M., & Pegna, A. J. (2021). Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: A cross-sectional and longitudinal study. Scientific Reports, 11(1), Art. 1. https://doi.org/10.1038/s41598-020-79139-8
  • Gainotti, G. (2018). Emotions and the right hemisphere: Can new data clarify old models? The Neuroscientist. https://doi.org/10.1177/1073858418785342
  • Gençer, N. G., & Acar, C. E. (2004). Sensitivity of EEG and MEG measurements to tissue conductivity. Physics in Medicine and Biology, 49(5), 701. https://doi.org/10.1088/0031-9155/49/5/004
  • Hamann, S., & Mao, H. (2002). Positive and negative emotional verbal stimuli elicit activity in the left amygdala. NeuroReport, 13(1), 15. https://doi.org/10.1097/00001756-200201210-00008
  • Haueisen, J., Büttner, A., Nowak, H., Brauer, H., & Weiller, C. (1999). The Influence of Conductivity Changes in Boundary Element Compartments on the Forward and Inverse Problem in Electroencephalography and Magnetoencephalography—Der Einfluß der Änderung der Schalenleitfähigkeit bei Randelementemodellen auf die Vorwärtsrechnung und das inverse Problem in Elektroenzephalographie und Magnetoenzephalographie. 44(6), 150–157. https://doi.org/10.1515/bmte.1999.44.6.150
  • Haueisen, J., Ramon, C., Eiselt, M., Brauer, H., & Nowak, H. (1997). Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Transactions on Biomedical Engineering, 44(8), 727–735. https://doi.org/10.1109/10.605429
  • Hauk, O., & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 115(5), 1090–1103. https://doi.org/10.1016/j.clinph.2003.12.020
  • Hautzinger, M., Keller, F., & Kühner, C. (2009). BDI-II. Beck-depressionsinventar.Revision. 2, Auflage. Pearson Assessment.
  • Herbert, C., Ethofer, T., Anders, S., Junghofer, M., Wildgruber, D., Grodd, W., & Kissler, J. (2009). Amygdala activation during reading of emotional adjectives – an advantage for pleasant content. Social Cognitive and Affective Neuroscience, 4(1), 35–49. https://doi.org/10.1093/scan/nsn027
  • Herbert, C., Junghofer, M., & Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophysiology, 45(3), 487–498. https://doi.org/10.1111/j.1469-8986.2007.00638.x
  • Herlin, B., Navarro, V., & Dupont, S. (2021). The temporal pole: From anatomy to function – a literature appraisal. Journal of Chemical Neuroanatomy, 113, 101925. https://doi.org/10.1016/j.jchemneu.2021.101925
  • Hinojosa, J. A., Mendez-Bertolo, C., & Pozo, M. A. (2010). Looking at emotional words is not the same as reading emotional words: Behavioral and neural correlates – Hinojosa – 2010 – Psychophysiology – Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111j.1469-8986.2010.00982.x?casa_token=3F0zvusx5aAAAAAA%3A8smZdbvpvEp-RMxTtf4pm0BBcMCv99AHgaahjTsN-UesVlCJlnrSDrreM_2pPBY7ksc2zdx-swTE8vfc6Q
  • Hoemann, K., & Feldman Barrett, L. (2019). Concepts dissolve artificial boundaries in the study of emotion and cognition, uniting body, brain, and mind. Cognition and Emotion, 33(1), 67–76. https://doi.org/10.1080/02699931.2018.1535428
  • Hsu, C.-T., Jacobs, A. M., Citron, F. M. M., & Conrad, M. (2015). The emotion potential of words and passages in reading harry potter – an fMRI study. Brain and Language, 142, 96–114. https://doi.org/10.1016/j.bandl.2015.01.011
  • Huang, J. C., Nicholson, C., & Okada, Y. C. (1990). Distortion of magnetic evoked fields and surface potentials by conductivity differences at boundaries in brain tissue. Biophysical Journal, 57(6), 1155–1166. https://doi.org/10.1016/S0006-3495(90)82635-7
  • Hughlings Jackson, J. (1866). Clinical remarks on emotional and intellectual language in some cases of disease of the nervous system. Lancet, i, 5.
  • Hung, Y., Smith, M. L., Bayle, D. J., Mills, T., Cheyne, D., & Taylor, M. J. (2010). Unattended emotional faces elicit early lateralized amygdala–frontal and fusiform activations. NeuroImage, 50(2), 727–733. https://doi.org/10.1016/j.neuroimage.2009.12.093
  • IBM Corp. (2017). IBM SPSS statistics for windows (Version 25.0) [Computer software]. IBM Corp.
  • Ille, N., Berg, P., & Scherg, M. (2002). Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. Journal of Clinical Neurophysiology, 19(2), 113–124. https://doi.org/10.1097/00004691-200203000-00002
  • Kanner, A. M. (2008). Mood disorder and epilepsy: A neurobiologic perspective of their relationship. Dialogues in Clinical Neuroscience, 10(1), 39–45. https://doi.org/10.31887/DCNS.2008.10.1/amkanner
  • Kanske, P., & Kotz, S. A. (2007). Concreteness in emotional words: ERP evidence from a hemifield study. Brain Research, 1148, 138–148. https://doi.org/10.1016/j.brainres.2007.02.044
  • Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences, 101(9), 3310–3315. https://doi.org/10.1073/pnas.0306408101
  • Kensinger, E. A., & Schacter, D. L. (2006). Processing emotional pictures and words: Effects of valence and arousal. Cognitive, Affective, & Behavioral Neuroscience, 6(2), 110–126. https://doi.org/10.3758/CABN.6.2.110
  • Keuper, K., Zwanzger, P., Nordt, M., Eden, A., Laeger, I., Zwitserlood, P., Kissler, J., Junghöfer, M., & Dobel, C. (2014). How ‘love’ and ‘hate’ differ from ‘sleep’: Using combined electro/magnetoencephalographic data to reveal the sources of early cortical responses to emotional words. Human Brain Mapping, 35(3), 875–888. https://doi.org/10.1002/hbm.22220
  • Kissler, J. (2013). Love letters and hate mail: Cerebral processing of emotional language content. In The Cambridge handbook of human affective neuroscience (S. 304–328). Cambridge University Press. https://doi.org/10.1017/CBO9780511843716.017
  • Kissler, J., Assadollahi, R., & Herbert, C. (2006). Emotional and semantic networks in visual word processing: Insights from ERP studies. In G. E. S. Anders, M. Junghofer, J. Kissler, & D. Wildgruber (Hrsg.) (Eds.), Progress in brain research (Bd. 156, S. 147–183). Elsevier. http://www.sciencedirect.com/science/article/pii/S007961230656008X
  • Kissler, J., & Bromberek-Dyzman, K. (2021). Mood induction differently affects early neural correlates of evaluative word processing in L1 and L2. Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389fpsyg.2020.588902. https://doi.org/10.3389/fpsyg.2020.588902
  • Kissler, J., & Herbert, C. (2013). Emotion, Etmnooi, or Emitoon? – Faster lexical access to emotional than to neutral words during reading. Biological Psychology, 92(3), 464–479. https://doi.org/10.1016/j.biopsycho.2012.09.004
  • Kissler, J., Herbert, C., Peyk, P., & Junghofer, M. (2007). Buzzwords. Psychological Science, 18(6), 475–480. https://doi.org/10.1111/j.1467-9280.2007.01924.x
  • Kissler, J., Herbert, C., Winkler, I., & Junghofer, M. (2009). Emotion and attention in visual word processing – an ERP study. Biological Psychology, 80(1), 75–83. https://doi.org/10.1016/j.biopsycho.2008.03.004
  • Kohno, S., Noriuchi, M., Iguchi, Y., Kikuchi, Y., & Hoshi, Y. (2015). Emotional discrimination during viewing unpleasant pictures: Timing in human anterior ventrolateral prefrontal cortex and amygdala. Frontiers in Human Neuroscience, 9. https://www.frontiersin.org/article/10.3389fnhum.2015.00051 https://doi.org/10.3389/fnhum.2015.00051
  • Kramer, J. H., Rosen, H. J., Du, A.-T., Schuff, N., Hollnagel, C., Weiner, M. W., Miller, B. L., & Delis, D. C. (2005). Dissociations in hippocampal and frontal contributions to episodic memory performance. Neuropsychology, 19(6), 799–805. https://doi.org/10.1037/0894-4105.19.6.799
  • Kuchinke, L., Jacobs, A. M., Grubich, C., Võ, M. L.-H., Conrad, M., & Herrmann, M. (2005). Incidental effects of emotional valence in single word processing: An fMRI study. NeuroImage, 28(4), 1022–1032. https://doi.org/10.1016/j.neuroimage.2005.06.050
  • Laeger, I., Dobel, C., Dannlowski, U., Kugel, H., Grotegerd, D., Kissler, J., Keuper, K., Eden, A., Zwitserlood, P., & Zwanzger, P. (2012). Amygdala responsiveness to emotional words is modulated by subclinical anxiety and depression. Behavioural Brain Research, 233(2), 508–516. https://doi.org/10.1016/j.bbr.2012.05.036
  • Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C. D. (1981). STAI.State-trait-angstinventar. Beltz Test GmbH.
  • Lewis, P., Critchley, H., Rotshtein, P., & Dolan, R. (2006). Neural correlates of processing valence and arousal in affective words. Cerebral Cortex, 17(3), 742–748. https://doi.org/10.1093/cercor/bhk024
  • Lifshitz, K. (1966). The averaged evoked cortical response to complex visual stimuli. Psychophysiology, 3(1), 55–68. https://doi.org/10.1111/j.1469-8986.1966.tb02680.x
  • Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6. https://www.frontiersin.org/article/10.3389fpsyg.2015.00444 https://doi.org/10.3389/fpsyg.2015.00444
  • Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143. https://doi.org/10.1017/S0140525X11000446
  • Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., Ly, A., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, R. D., & Wagenmakers, E.-J. (2019).JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88(2), 1–17. https://doi.org/10.18637/jss.v088.i02
  • Maltzman, I. (1977). Orienting in classical conditioning and generalization of the galvanic skin response to words: An overview. Journal of Experimental Psychology: General, 106(2), 111–119. https://doi.org/10.1037/0096-3445.106.2.111
  • Martín-Loeches, M., Hinojosa, J. A., Gómez-Jarabo, G., & Rubia, F. J. (2001). An early electrophysiological sign of semantic processing in basal extrastriate areas. Psychophysiology, 38(1), 114–124. https://doi.org/10.1111/1469-8986.3810114
  • Mesulam, M. M. (2023). Temporopolar regions of the human brain. Brain, 146(1), 20–41. https://doi.org/10.1093/brain/awac339
  • Mielke, M., Reisch, L. M., Mehlmann, A., Schindler, S., Bien, C. G., & Kissler, J. (2022). Right medial temporal lobe structures particularly impact early stages of affective picture processing. Human Brain Mapping, 43(2), 787–798. https://doi.org/10.1002/hbm.25687
  • Miskovic, V., & Anderson, A. (2018). Modality general and modality specific coding of hedonic valence. Current Opinion in Behavioral Sciences, 19, 91–97. https://doi.org/10.1016/j.cobeha.2017.12.012
  • Montoya, P., Larbig, W., Pulvermüller, F., Flor, H., & Birbaumer, N. (1996). Cortical correlates of semantic classical conditioning. Psychophysiology, 33(6), 644–649. https://doi.org/10.1111/j.1469-8986.1996.tb02359.x
  • Morris, J. S., deBonis, M., & Dolan, R. J. (2002). Human amygdala responses to fearful eyes. NeuroImage, 17(1), 214–222. https://doi.org/10.1006/nimg.2002.1220
  • Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), https://doi.org/10.1038/383812a0
  • Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 1634–1647. https://doi.org/10.1093/cercor/bhr238
  • Naccache, L., Gaillard, R., Adam, C., Hasboun, D., Clémenceau, S., Baulac, M., Dehaene, S., & Cohen, L. (2005). A direct intracranial record of emotions evoked by subliminal words. Proceedings of the National Academy of Sciences, 102(21), 7713–7717. https://doi.org/10.1073/pnas.0500542102
  • Nakic, M., Smith, B. W., Busis, S., Vythilingam, M., & Blair, R. J. R. (2006). The impact of affect and frequency on lexical decision: The role of the amygdala and inferior frontal cortex. NeuroImage, 31(4), 1752–1761. https://doi.org/10.1016/j.neuroimage.2006.02.022
  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(7), 1718–1731. https://doi.org/10.1093/brain/awm052
  • Onofrj, M., Fulgente, T., Malatesta, G., & Locatelli, T. (1994). Focal abnormalities of P3 ERPs unveiled in patients with cortical lesions and primary progressive aphasia by average reference recordings. Brain Topography, 6(4), 311–322. https://doi.org/10.1007/BF01211176
  • Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical neuroimaging reveals early generator modulation to emotional words. NeuroImage, 21(4), 1242–1251. https://doi.org/10.1016/j.neuroimage.2003.11.007
  • Pauligk, S., Kotz, S. A., & Kanske, P. (2019). Differential impact of emotion on semantic processing of abstract and concrete words: ERP and fMRI evidence. Scientific Reports, 9(1), Art. 1. https://doi.org/10.1038/s41598-019-50755-3
  • Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357–371. https://doi.org/10.1016/j.tics.2017.03.002
  • Peyk, P., De Cesarei, A., & Junghöfer, M. (2011). Electromagnetoencephalography software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience, 2011, 1. https://doi.org/10.1155/2011/861705
  • Ponz, A., Montant, M., Liegeois-Chauvel, C., Silva, C., Braun, M., Jacobs, A. M., & Ziegler, J. C. (2014). Emotion processing in words: A test of the neural re-use hypothesis using surface and intracranial EEG. Social Cognitive and Affective Neuroscience, 9(5), 619–627. https://doi.org/10.1093/scan/nst034
  • Puce, A., Kalnins, R. M., Berkovic, S. F., & Bladin, P. F. (1989). Limbic P3 potentials, seizure localization, and surgical pathology in temporal lobe epilepsy. Annals of Neurology, 26(3), 377–385. https://doi.org/10.1002/ana.410260311
  • Pulvermüller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17(9), 458–470. https://doi.org/10.1016/j.tics.2013.06.004
  • Reisch, L. M., Wegrzyn, M., Mielke, M., Mehlmann, A., Woermann, F. G., Bien, C. G., & Kissler, J. (2022a). Face processing and efficient recognition of facial expressions are impaired following right but not left anteromedial temporal lobe resections: Behavioral and fMRI evidence. Neuropsychologia, 174, 108335. https://doi.org/10.1016/j.neuropsychologia.2022.108335
  • Reisch, L. M., Wegrzyn, M., Mielke, M., Mehlmann, A., Woermann, F. G., Kissler, J., & Bien, C. G. (2022b). Effects of left and right medial temporal lobe resections on hemodynamic correlates of negative and neutral scene processing. Human Brain Mapping, 43(10), 3293–3305. https://doi.org/10.1002/hbm.25852
  • Reisch, L. M., Wegrzyn, M., Woermann, F. G., Bien, C. G., & Kissler, J. (2020). Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Human Brain Mapping, 41(15), 4332–4354. https://doi.org/10.1002/hbm.25128
  • Rotshtein, P., Richardson, M. P., Winston, J. S., Kiebel, S. J., Vuilleumier, P., Eimer, M., Driver, J., & Dolan, R. J. (2010). Amygdala damage affects event-related potentials for fearful faces at specific time windows. Human Brain Mapping, 31(7), 1089–1105. https://doi.org/10.1002/hbm.20921
  • Ruz, M., & Nobre, A. C. (2008). Attention modulates initial stages of visual word processing. Journal of Cognitive Neuroscience, 20(9), 1727–1736. https://doi.org/10.1162/jocn.2008.20119
  • Schacht, A., & Sommer, W. (2009). Time course and task dependence of emotion effects in word processing. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 28–43. https://doi.org/10.3758/CABN.9.1.28
  • Schindler, S., & Kissler, J. (2016). Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex. Human Brain Mapping, 37(10), 3575–3587. https://doi.org/10.1002/hbm.23261
  • Schindler, S., Vormbrock, R., & Kissler, J. (2019). Emotion in context: How sender predictability and identity affect processing of words as imminent personality feedback. Frontiers in Psychology, 10. https://www.frontiersin.org/article/10.3389fpsyg.2019.00094 https://doi.org/10.3389/fpsyg.2019.00094
  • Schindler, S., Wegrzyn, M., Steppacher, I., & Kissler, J. (2015). Perceived communicative context and emotional content amplify visual word processing in the fusiform gyrus. The Journal of Neuroscience, 35(15), 6010–6019. https://doi.org/10.1523/JNEUROSCI.3346-14.2015
  • Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). Emotion and attention: Event-related brain potential studies. In S. Anders, G. Ende, M. Junghofer, J. Kissler, & D. Wildgruber (Hrsg.) (Eds.), Progress in brain research (Bd. 156, S. 31–51). Elsevier. https://doi.org/10.1016/S0079-6123(06)56002-9
  • Schupp, H. T., Öhman, A., Junghöfer, M., Weike, A. I., Stockburger, J., & Hamm, A. O. (2004). The facilitated processing of threatening faces: An ERP analysis. Emotion, 4(2), 189–200. https://doi.org/10.1037/1528-3542.4.2.189
  • Schupp, H. T., Stockburger, J., Codispoti, M., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2007). Selective visual attention to emotion. The Journal of Neuroscience, 27(5), 1082–1089. https://doi.org/10.1523/JNEUROSCI.3223-06.2007
  • Schweinberger, S. (2002). Face and word recognition in patients with left and right hemispheric lesions: Evidence from reaction times and ERPs. Zeitschrift Für Neuropsychologie, 13(1), 69. https://doi.org/10.1024//1016-264X.13.1.69
  • Scott, G. G., O’Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word processing: Evidence from event-related potentials. Biological Psychology, 80(1), 95–104. https://doi.org/10.1016/j.biopsycho.2008.03.010
  • Sereno, S. C., Brewer, C. C., & O’Donnell, P. J. (2003). Context effects in word recognition. Psychological Science, 14(4), 328–333. https://doi.org/10.1111/1467-9280.14471
  • Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a time-line of word recognition. NeuroReport, 9(10), 2195–2200. https://doi.org/10.1097/00001756-199807130-00009
  • Shablack, H., Becker, M., & Lindquist, K. A. (2020). How do children learn novel emotion words? A study of emotion concept acquisition in preschoolers. Journal of Experimental Psychology: General, 149(8), 1537–1553. https://doi.org/10.1037/xge0000727
  • Snefjella, B., Lana, N., & Kuperman, V. (2020). How emotion is learned: Semantic learning of novel words in emotional contexts. Journal of Memory and Language, 115, 104171. https://doi.org/10.1016/j.jml.2020.104171
  • Tabert, M. H., Borod, J. C., Tang, C. Y., Lange, G., Wei, T. C., Johnson, R., Nusbaum, A. O., & Buchsbaum, M. S. (2001). Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: An fMRI study. Neuropsychologia, 39(6), 556–573. https://doi.org/10.1016/S0028-3932(00)00157-3
  • Talmi, D. (2013). Enhanced emotional memory. Current Directions in Psychological Science, 22(6), 430–436. https://doi.org/10.1177/0963721413498893
  • Turkeltaub, P. E. (2015). Brain stimulation and the role of the right hemisphere in aphasia recovery. Current Neurology and Neuroscience Reports, 15(11), 72. https://doi.org/10.1007/s11910-015-0593-6
  • Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585–594. https://doi.org/10.1016/j.tics.2005.10.011
  • Wang, L., & Bastiaansen, M. (2014). Oscillatory brain dynamics associated with the automatic processing of emotion in words. Brain and Language, 137, 120–129. https://doi.org/10.1016/j.bandl.2014.07.011
  • Zhang, D., He, W., Wang, T., Luo, W., Zhu, X., Gu, R., Li, H., & Luo, Y. (2014). Three stages of emotional word processing: An ERP study with rapid serial visual presentation. Social Cognitive and Affective Neuroscience, 9(12), 1897–1903. https://doi.org/10.1093/scan/nst188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.