1,309
Views
1
CrossRef citations to date
0
Altmetric
Regular Article

Experientially-grounded and distributional semantic vectors uncover dissociable representations of conceptual categories

ORCID Icon, , &
Received 11 Jun 2022, Accepted 26 Jun 2023, Published online: 12 Jul 2023

References

  • Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Raizada, R. D., Lin, F., & Lalor, E. C. (2019). An integrated neural decoder of linguistic and experiential meaning. Journal of Neuroscience, 39(45), 8969–8987. https://doi.org/10.1523/JNEUROSCI.2575-18.2019
  • Anderson, A. J., Kiela, D., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Raizada, R. D. S., Grimm, S., & Lalor, E. C. (2021). Deep artificial neural networks reveal a distributed cortical network encoding propositional sentence-level meaning. Journal of Neuroscience, 41(18), 4100–4119. https://doi.org/10.1523/JNEUROSCI.1152-20.2021
  • Anderson, A. J., McDermott, K., Rooks, B., Heffner, K. L., Dodell-Feder, D., & Lin, F. V. (2020). Decoding individual identity from brain activity elicited in imagining common experiences. Nature Communications, 11(1), 5916. https://doi.org/10.1038/s41467-020-19630-y
  • Andrews, M., Frank, S., & Vigliocco, G. (2014). Reconciling embodied and distributional accounts of meaning in language. Topics in Cognitive Science, 6(3), 359–370. https://doi.org/10.1111/tops.12096
  • Baayen, H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database (CD-ROM). Linguistic Data Consortium.
  • Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 238–247). Association for Computational Linguistics. https://aclanthology.org/P14-1023/
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Science, 22(4), 577–609. https://doi.org/10.1017/s0140525x99002149.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
  • Barsalou, L. W. (2017). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18–38. https://doi.org/10.1016/j.neuropsychologia.2017.04.011
  • Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. A. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199217274.003.0013
  • Bedny, M., & Caramazza, A. (2011). Perception, action, and word meanings in the human brain: The case from action verbs. Annals of the New York Academy of Sciences, 1224(1), 81–95. https://doi.org/10.1111/j.1749-6632.2011.06013.x
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Ser. B, 57(1), 289–300.
  • Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33(3-4), 130–174. https://doi.org/10.1080/02643294.2016.1147426
  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Science, 15(11), 527–536. https://doi.org/10.1016/j.tics.2011.10.001
  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055
  • Bonner, M. F., & Epstein, R. A. (2021). Object representations in the human brain reflect the co-occurrence statistics of vision and language. Nature Communications, 12(1), 4081. https://doi.org/10.1038/s41467-021-24368-2
  • Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. http://dx.doi.org/10.1016/0005-7916(94)90063-9.
  • Bruffaerts, R., Dupont, P., Peeters, R., De Deyne, S., Storms, G., & Vandenberghe, R. (2013). Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words. Journal of Neuroscience, 33, 18597–18607.
  • Cangelosi, A., & Harnad, S. (2001). The adaptive advantage of symbolic theft over sensorimotor toil: Grounding language in perceptual categories. Evolution of Communication, 4(1), 117–142. https://doi.org/10.1075/eoc.4.1.07can
  • Carlson, T. A., Simmons, R. A., Kriegeskorte, N., & Slevc, L. R. (2014). The emergence of semantic meaning in the ventral temporal pathway. Journal of Cognitive Neuroscience, 26(1), 120–131. https://doi.org/10.1162/jocn_a_00458
  • Carota, F., Kriegeskorte, N., Nili, H., & Pulvermüller, F. (2017). Representational similarity mapping of distributional semantics in left inferior frontal, middle temporal and motor cortex. Cerebral Cortex, 27(1), 294–309. https://doi.org/10.1093/cercor/bhw379
  • Carota, F., Moseley, R., & Pulvermüller, F. (2012). Body-part-specific representations of semantic noun categories. Journal of Cognitive Neuroscience, 24(6), 1492–1509. http://dx.doi.org/10.1162/jocn_a_00219.
  • Carota, F., Nili, H., Pulvermüller, F., & Kriegeskorte, N. (2021). Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: Evidence from RSA of BOLD signals. NeuroImage, 1(224), 117408. https://doi.org/10.1016/j.neuroimage.2020.117408
  • Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2(10), 913–919. https://doi.org/10.1038/13217
  • Clarke, A., & Tyler, L. (2014). Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34(14), 4766–4775. https://doi.org/10.1523/JNEUROSCI.2828-13.2014
  • Coutanche, M. N., Solomon, S. H., & Thompson-Schill, S. L. (2016). A meta-analysis of fMRI decoding: Quantifying influences on human visual population codes. Neuropsychologia, 82, 134–141. https://doi.org/10.1016/j.neuropsychologia.2016.01.018
  • Crutch, S. J., Troche, J., Reilly, J., & Ridgway, G. R. (2013). Abstract conceptual feature ratings: The role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Frontiers in Human Neuroscience, 7, 186. http://dx.doi.org/10.3389/fnhum.2013.00186.
  • Damasio, A. R. (1989a). The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1(1), 123–132.
  • Damasio, A. R. (1989b). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1–2), 25–62.
  • Damasio, A. R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences, USA, 90(11), 4957–4960. https://doi.org/10.1073/pnas.90.11.4957
  • Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D., & Damasio, A. R. (1996). A neural basis for lexical retrieval. Nature, 380(6574), 499–505. http://dx.doi.org/10.1038/380499a0.
  • Davey, J., Rueschemeyer, S.-A., Costigan, A., Murphy, N., Krieger-Redwood, K., Hallam, G., & Jefferies, E. (2015). Shared neural processes support semantic control and action understanding. Brain and Language, 142, 24–35. https://doi.org/10.1016/j.bandl.2015.01.002
  • Desai, R. H., Binder, J. R., Conant, L. L., & Seidenberg, M. S. (2009). Activation of sensory-motor areas in sentence comprehension. Cerebral Cortex, 20(2), 468–478. https://doi.org/10.1093/cercor/bhp115
  • Devereux, B. J., Clarke, A., Marouchos, A., & Tyler, L. K. (2013). Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects. Journal of Neuroscience, 33(48), 18906–18916. https://doi.org/10.1523/JNEUROSCI.3809-13.2013
  • Dreyer, F., Picht, T., Frey, D., Vijkoczy, P., & Pulvermüller, F. (2020). The functional relevance of dorsal motor systems for processing tool nouns– evidence from patients with focal lesions. Neuropsychologia, 141, 107384. https://doi.org/10.1016/j.neuropsychologia.2020.107384
  • Elli, G. V., Lane, C., & Bedny, M. (2019). A double dissociation in sensitivity to verb and noun semantics across cortical networks. Cerebral Cortex, 29(11), 4803–4817. https://doi.org/10.1093/cercor/bhz014
  • Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Conant, L. L., & Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26(5), 2018–2034. https://doi.org/10.1093/cercor/bhv020
  • Fernandino, L., Colin, J., Humphries, C. J., Seidenberg, M. S., Gross, W. L., Conant, L. L., & Binder, J. R. (2015). Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes. Neuropsychologia, 76, 17–26. https://doi.org/10.1016/j.neuropsychologia.2015.04.009
  • Fernandino, L., Tong, J. Q., Conant, L. L., Humphries, C. J., & Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. https://doi.org/10.1073/pnas.2108091119
  • Forseth, K. J., Kadipasaoglu, C. M., Conner, C. R., Hickok, G., Knight, R. T., & Tandon, N. (2018). A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain, 141(7), 2112–2126. https://doi.org/10.1093/brain/awy120
  • Fu, Z., Wang, X., Wang, X., Yang, H., Wang, J., Wei, T., Liao, X., Liu, Z., Chen, H., & Bi, Y. (2022). Different computational relations in language are captured by distinct brain systems. Cerebral Cortex, 33(4), 997–1013. https://doi.org/10.1093/cercor/bhac117
  • Fuster, J. M. (1997). Network memory. Trends in Neurosciences, 20(10), 451–459. https://doi.org/10.1016/S0166-2236(97)01128-4
  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455–479. https://doi.org/10.1080/02643290442000310
  • Garagnani, M., & Pulvermüller, F. (2016). Conceptual grounding of language in action and perception: A neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience, 43(6), 721–737. https://doi.org/10.1111/ejn.13145
  • Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88(2), 237–294; 585–644. https://doi.org/10.1093/brain/88.2.237
  • Ghio, M., Vaghi, M. M. S., Perani, D., & Tettamanti, M. (2016). Decoding the neural representation of fine-grained conceptual categories. NeuroImage, 132, 93–103. https://doi.org/10.1016/j.neuroimage.2016.02.009
  • Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379–401. https://doi.org/10.1006/jmla.2000.2714
  • Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L., & McCluskey, L. (2008). Impaired action knowledge in amyotrophic lateral sclerosis. Neurology, 71(18), 1396–1401. https://doi.org/10.1212/01.wnl.0000319701.50168.8c
  • Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Science, 9(9), 416–423. https://doi.org/10.1016/j.tics.2005.07.004
  • Hagoort, P. (2015). MUC (memory, unification, control): A model on the neurobiology of language beyond single word processing. Neurobiology of Language, 2016, 339–347. https://doi.org/10.1016/B978-0-12-407794-2.00028-6
  • Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society B, 375(1791), 20190301. https://doi.org/10.1098/rstb.2019.0301
  • Harnad, S. (1990). The symbol grounding problem. Physica, D42, 335–346.
  • Harnad, S. (2012). From sensorimotor categories and pantomime to grounded symbols and propositions. In K. R. Gibson, & M. Tallerman (Eds.), The Oxford handbook of language evolution (pp. 387–392). Oxford University Press.
  • Hauk, O., Davis, M., & Pulvermüller, F. (2008). Modulation of brain activity by multiple lexical and word form variables in visual word recognition: A parametric fMRI study. Neuroimage, 42(3), 1185–1195. https://doi.org/10.1016/j.neuroimage.2008.05.054
  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in the motor and premotor cortex. Neuron, 41(2), 301–307. https://doi.org/10.1016/S0896-6273(03)00838-9
  • Hickok, G. (2014). The myth of mirror neurons. The real neuroscience of communication and cognition. Norton & Company.
  • Hillis, A. E., Heidler-Gray, J., Newhart, M., Chang, S., Ken, L., & Bak, T. H. (2006). Naming and comprehension in primary progressive aphasia: The influence of grammatical word class. Aphasiology, 20(2-4), 246–256. https://doi.org/10.1080/02687030500473262
  • Hillis, A. E., Oh, S., & Ken, L. (2004). Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology, 55(2), 268–275. https://doi.org/10.1002/ana.10812
  • Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293–328. https://doi.org/10.1037/rev0000094
  • Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D. (2012). Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex, 48(7), 826–848. https://doi.org/10.1016/j.cortex.2010.11.001
  • Kemmerer, D., & Tranel, D. (2003). A double dissociation between the meanings of action verbs and locative prepositions. Neurocase, 9(5), 421–435. https://doi.org/10.1076/neur.9.5.421.16551
  • Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34. https://doi.org/10.1037/a0021446
  • Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(1), 4–5. https://doi.org/10.3389/neuro.01.016.2008
  • Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55. https://doi.org/10.1038/nrn.2016.150
  • Landauer, T. K. (1998). Learning and representing verbal meaning: The latent semantic analysis theory. Current Directions in Psychological Science, 7(5), 161–164. https://doi.org/10.1111/1467-8721.ep10836862
  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240. https://doi.org/10.1037/0033-295X.104.2.211
  • Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933. https://doi.org/10.1038/nrn2532
  • LimeSurvey Project Team, Carsten Schmitz. (2013). LimeSurvey: An Open Source survey tool. LimeSurvey Project, Hamburg, Germany. http://www.limesurvey.org
  • Liuzzi, A. G., Aglinskas, A., & Fairhall, S. L. (2020). General and feature-based semantic representations in the semantic network. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-65906-0
  • Liuzzi, A. G., Bruffaerts, R., Peeters, R., Adamczuk, K., Keuleers, E., De Deyne, S., Storms, G., Dupont, P., & Vandenberghe, R. (2017). Cross-modal representation of spoken and written word meaning in left pars triangularis. Neuroimage, 150, 292–307. https://doi.org/10.1016/j.neuroimage.2017.02.032
  • Louwerse, M. (2008). Embodied relations are encoded in language. Psychonomic Bulletin and Review, 15, 838–844.
  • Louwerse, M. (2018). Knowing the meaning of a word by the linguistic and perceptual company it keeps. Trends in Cognitive Science, 10(3), 573–589.
  • Louwerse, M. (2021). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3(2), 273–302. https://doi.org/10.1111/j.1756-8765.2010.01106.x
  • Marino, B. F., Gallese, V., Buccino, G., & Riggio, L. (2012). Language sensorimotor specificity modulates the motor system. Cortex, 48(7), 849–856. https://doi.org/10.1016/j.cortex.2010.12.003
  • Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58(1), 25–45. https://doi.org/10.1146/annurev.psych.57.102904.190143
  • Martin, A., Wiggs, C., Ungerleider, L., & Haxby, L. V. (1996). Neural correlates of category-specific knowledge. Nature, 379(6566), 649–652. https://doi.org/10.1038/379649a0
  • Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neuroscience, 32(7), 376–382. https://doi.org/10.1016/j.tins.2009.04.002
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, https://doi.org/10.48550/arXiv.1310.4546
  • Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y. T., Fryer, T. D., Williams, G. B., Hodges, J. R., & Nestor, P. J. (2010). What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133(11), 3256–3268. https://doi.org/10.1093/brain/awq272
  • Mirman, D., Landrigan, J.-F., & Britt, A. E. (2017). Taxonomic and thematic semantic systems. Psychological Bulletin, 143(5), 499–520. https://doi.org/10.1037/bul0000092
  • Mitchell, D. J., & Cusack, R. (2016). Semantic and emotional content of imagined representations in human occipitotemporal cortex. Scientific Reports, 6(20232). https://doi.org/10.1038/srep20232
  • Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 1191–1195. https://doi.org/10.1126/science.1152876
  • Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS in Computational Biology, 10(4), e1003553. https://doi.org/10.1371/journal.pcbi.1003553
  • Osgood, C. E., May, W. H., & Miron, M. S. (1975). Cross-cultural universals of affective meaning. University of Illinois Press.
  • Paivio, A. (1971). Imagery and verbal processes. Holt, Rinehart and Winston.
  • Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987. https://doi.org/10.1038/nrn2277
  • Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532–1543).
  • Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., Botvinick, M., & Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from brain activation. Nature Neuroscience, 9, 963. https://doi.org/10.1038/s41467-018-03068-4
  • Perini, F., Caramazza, A., & Peelen, M. V. (2014). Left occipitotemporal cortex contributes to the discrimination of tool-associated hand actions: FMRI and TMS evidence. Frontiers in Human Neuroscience, 8, 591. https://doi.org/10.3389/fnhum.2014.00591
  • Pillon, A., & d'Honincthun, P. (2011). A common processing system for the concepts of artifacts and actions? Evidence from a case of a disproportionate conceptual impairment for living things. Cognitive Neuropsychology, 28(1), 1–43. https://doi.org/10.1080/02643294.2011.615828
  • Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10(1), 15–35. https://doi.org/10.1006/nimg.1999.0441
  • Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned at the border of human visual cortex. Nature Neuroscience, 24(11), 1628–1636. https://doi.org/10.1038/s41593-021-00921-6
  • Price, A. R., Bonner, M. F., Peelle, J. M., & Grossman, M. (2015). Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. Journal of Neuroscience, 35(7), 3276–3284.
  • Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197(3), 335–359.
  • Pulvermüller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22(2), 253–336. https://doi.org/10.1017/S0140525X9900182X
  • Pulvermüller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Science, 17(9), 458–470. https://doi.org/10.1016/j.tics.2013.06.004
  • Pulvermüller, F. (2018). The case of CAUSE: Neurobiological mechanisms for grounding an abstract concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170129. https://doi.org/10.1098/rstb.2017.0129
  • Pulvermüller, F., Kherif, F., Hauk, O., Mohr, B., & Nimmo-Smith, I. (2009). Cortical cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Human Brain Mapping, 30(12), 3837–3850. https://doi.org/10.1002/hbm.20811
  • Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. (2005). Brain signatures of meaning access in action word recognition. Journal of Cognitive Neuroscience, 17(6), 884–892. https://doi.org/10.1162/0898929054021111
  • Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M. R., & Wennekers, T. (2021). Biological constraints on neural network models of cognitive function. Nature Reviews Neuroscience, 22(8), 488–502. http://dx.doi.org/10.1038/s41583-021-00473-5.
  • Reilly, J., Peelle, J. E., Garcia, A., & Crutch, S. J. (2016). Linking somatic and symbolic representation in semantic memory: The dynamic multilevel reactivation framework. Psychonomic Bulletin and Review, 23(4), 1002–1014. https://doi.org/10.3758/s13423-015-0824-5
  • Rueschmeyer, S., van Rooji, D., Lindemann, O., Willems, R., & Bekkering, H. (2010). The function of words: Distinct neural correlates for words denoting differently manipulable objects. Journal of Cognitive Neuroscience, 22(8), 1844–1851. https://doi.org/10.1162/jocn.2009.21310
  • Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–457. https://doi.org/10.1017/S0140525X00005756
  • Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, USA, 94(26), 14792–14797. https://doi.org/10.1073/pnas.94.26.14792
  • Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in System Neuroscience, 201(5), 1. https://doi.org/10.3389/fnsys.2011.00001
  • Tyler, L. K., Chiu, S., Zhuang, J., Randall, B., Devereux, B. J., Wright, P., Clarke, A., & Taylor, K. I. (2013). Objects and categories: Feature statistics and object processing in the ventral stream. Journal of Cognitive Neuroscience, 25(19), 1723–1735. https://doi.org/10.1162/jocn_a_00419
  • Vannuscorps, G., & Pillon, A. (2011). A domain-specific system for representing knowledge of both man-made objects and human actions. Evidence from a case with an association of deficits. Neuropsychologia, 49(9), 2321–2341. https://doi.org/10.1016/j.neuropsychologia.2011.04.006
  • Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 1767–1777. http://dx.doi.org/10.1093/cercor/bht025.
  • Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48(4), 422–488. https://doi.org/10.1016/j.cogpsych.2003.09.001
  • Vincent-Lamarre, P., Massé, A. B., Lopes, M., Lord, M., Marcotte, O., & Harnad, S. (2016). The latent structure of dictionaries. Topics in Cognitive Science, 8(3), 625–659. https://doi.org/10.1111/tops.12211
  • Vukovic, N., & Shtyrov, Y. (2019). Learning with the wave of the hand: Kinematic and TMS evidence of primary motor cortex role in category-specific encoding of word meaning. Neuroimage, 202, 116179. https://doi.org/10.1016/j.neuroimage.2019.116179
  • Wang, X., Men, W., Gao, J., Caramazza, A., & Bi, Y. (2020). Two forms of knowledge representations in the human brain. Neuron, 107(2), 383–393. https://doi.org/10.1016/j.neuron.2020.04.010
  • Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairment. Brain, 107(3), 829–854. https://doi.org/10.1093/brain/107.3.829
  • Wittgenstein, L. (1953/2009). Philosophical investigations. Wiley-Blackwell.
  • Xiang, H., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cerebral Cortex, 20(3), 549–560. https://doi.org/10.1093/cercor/bhp119
  • Xu, Y., Wang, X., Wang, X., Men, W., Gao, J.-H., & Bi, Y. (2018). Doctor, teacher, and stethoscope: Neural representation of different types of semantic relations. Journal of Neuroscience, 38(13), 3303–3317. https://doi.org/10.1523/JNEUROSCI.2562-17.2018
  • Zwaan, R. A. (2014). Embodiment and language comprehension: Reframing the discussion. Trends in Cognitive Sciences, 18(5), 229–234. http://dx.doi.org/10.1016/j.tics.2014.02.008.