748
Views
0
CrossRef citations to date
0
Altmetric
Regular Articles

The interplay of computational complexity and memory load during quantifier verification

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-23 | Received 03 Jun 2022, Accepted 30 Jun 2023, Published online: 07 Aug 2023

References

  • Adam, K. C. S., Vogel, E. K., & Awh, E. (2020). Multivariate analysis reveals a generalizable human electrophysiological signature of working memory load. Psychophysiology, 57. https://doi.org/10.1111/psyp.v57.12
  • Amico, F., Ambrosini, E., Guillem, F., Mento, G., Power, D., Pergola, G., & Vallesi, A. (2015). The virtual tray of objects task as a novel method to electrophysiologically measure visuo-spatial recognition memory. International Journal of Psychophysiology, 98, 477–489. https://doi.org/10.1016/j.ijpsycho.2015.10.006
  • Arcara, G., Franzon, F., Gastaldon, S., Brotto, S., Semenza, C., Peressotti, F., & Zanini, C. (2019). One can be some but some cannot be one: ERP correlates of numerosity incongruence are different for singular and plural. Cortex, 116, 104–121. https://doi.org/10.1016/j.cortex.2018.10.022
  • Augurzky, P., Bott, O., Sternefeld, W., & Ulrich, R. (2017). Are all the triangles blue? – ERP evidence for the incremental processing of German quantifier restriction. Language and Cogntion, 9, 603–636. https://doi.org/10.1017/langcog.2016.30
  • Augurzky, P., Franke, M., & Ulrich, R. (2019). Gricean expectations in online sentence comprehension: An ERP study on the processing of scalar inferences. Cognitive Science, 43(8). https://doi.org/10.1111/cogs.2019.43.issue-8
  • Augurzky, P., Hohaus, V., & Ulrich, R. (2020). Context and complexity in incremental sentence interpretation: An ERP study on temporal quantification. Cognitive Science, 44(11). https://doi.org/10.1111/cogs.v44.11
  • Augurzky, P., Schlotterbeck, F., & Ulrich, R. (2020). Most (but not all) quantifiers are interpreted immediately in visual context. Language, Cognition and Neuroscience, 35(9), 1203–1222. https://doi.org/10.1080/23273798.2020.1722846
  • Axel, M., & Müller, N. G. (1996). Dissociations in the processing of ‘What’ and ‘Where’ information in working memory: An event-Related potential analysis. Journal of Cognitive Neuroscience, 8, 453–473. https://doi.org/10.1162/jocn.1996.8.5.453
  • Bach, E., Jelinek, E., Kratzer, A., & Partee, B. H. (Eds.). (1995). Quantification in natural languages. Kluwer Academic Publishers.
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/psych.2012.63.issue-1
  • Baggio, G. (2008). Processing temporal constraints: An ERP study. Language Learning, 58(S1), 35–55. https://doi.org/10.1111/lang.2008.58.issue-s1
  • Baggio, G. (2018). Meaning in the brain. MIT Press.
  • Baggio, G. (2020). Epistemic transfer between linguistics and neuroscience: Problems and prospects. In R. Nefdt, C. Klippi, & B. Karstens (Eds.), The philosophy and science of language: Interdisciplinary perspectives (pp. 275–308). Palgrave Macmillan.
  • Baggio, G., Choma, T., van Lambalgen, M., & Hagoort, P. (2010). Coercion and compositionality. Journal of Cognitive Neuroscience, 22, 2131–2140. https://doi.org/10.1162/jocn.2009.21303
  • Baggio, G., Stenning, K., & van Lambalgen, M. (2016). Semantics and cognition. In M. Aloni & P. Dekker (Eds.), The Cambridge handbook of formal semantics (pp. 756–774). Cambridge University Press. https://doi.org/10.1017/CBO9781139236157.
  • Baggio, G., van Lambalgen, M., & Hagoort, P. (2008). Computing and recomputing discourse models: An ERP study. Journal of Memory and Language, 59, 36–53. https://doi.org/10.1016/j.jml.2008.02.005
  • Baggio, G., van Lambalgen, M., & Hagoort, P. (2015). Logic as marr's computational level: Four case studies. Topics in Cognitive Science, 7(2), 287–298. https://doi.org/10.1111/tops.12125
  • Bailey, K., Mlynarczyk, G., & West, R. (2016). Slow wave activity related to working memory maintenance in the N-Back task. Journal of Psychophysiology, 30, 141–154. https://doi.org/10.1027/0269-8803/a000164
  • Barriga-Paulino, C. I., Rodríguez-Martínez, E. I., Rojas-Benjumea, M. Á., & Gómez, C. M. (2014). Slow wave maturation on a visual working memory task. Brain and Cognition, 88, 43–54. https://doi.org/10.1016/j.bandc.2014.04.003
  • Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219. https://doi.org/10.1007/BF00350139
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
  • Bird, A. (2021). Understanding the replication crisis as a base rate fallacy. The British Journal for the Philosophy of Science, 74, 965–993. https://doi.org/10.1093/bjps/axy051
  • Bremnes, H. S., Szymanik, J., & Baggio, G. (2022). Computational complexity explains neural differences in quantifier verification. Cognition, 223, Article 105013. https://doi.org/10.1016/j.cognition.2022.105013
  • Bremnes, H. S., Szymanik, J., & Baggio, G. (2023). Data for ‘The interplay of computational complexity and memory load during quantifier verification’. https://doi.org/10.18710/LODKEF.
  • Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21. https://doi.org/10.1080/17470215808416249
  • Carcassi, F., Steinert-Threlkeld, S., & Szymanik, J. (2021). Monotone quantifiers emerge via iterated learning. Cognitive Science, 45. https://doi.org/10.1111/cogs.v45.8
  • Chang, T. M. (1986). Semantic memory: Facts and models. Psychological Bulletin, 99, 199–220. https://doi.org/10.1037/0033-2909.99.2.199
  • Chemla, E., Dautriche, I., Buccola, B., & Fagot, J. (2019). Constraints on the lexicons of human languages have cognitive roots present in baboons (Papio papio). PNAS, 116(30). https://doi.org/10.1073/pnas.1907023116
  • Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113–124. https://doi.org/10.1109/TIT.1956.1056813
  • Clark, H. H. (1976). Semantics and comprehension. Mouton.
  • Clark, H. H., & Chase, W. G. (1972). On the process of comparing sentences against pictures. Cognitive Psychology, 3, 472–517. https://doi.org/10.1016/0010-0285(72)90019-9
  • Clark, H. H., & Chase, W. G. (1974). Perceptual coding strategies in the formation and verification of descriptions. Memory and Cognition, 2, 101–111. https://doi.org/10.3758/BF03197499
  • Coco, M. I., Araujo, S., & Petersson, K. M. (2017). Disentangling stimulus plausibility and contextual congruency: Electro-physiological evidence for differential cognitive dynamics. Neuropsychologia, 96, 150–163. https://doi.org/10.1016/j.neuropsychologia.2016.12.008
  • Coppock, E. (2019). Quantity superlatives in Germanic, or ‘Life on the fault line between adjective and determiner’. Journal of Germanic Linguistics, 31, 109–200. https://doi.org/10.1017/S1470542718000089
  • D'Arcy, R. C. N., Connolly, J. F., & Crocker, S. F. (2000). Latency shifts in the N2b component track phonological deviations inspoken words. Clinical Neurophysiology, 111, 40–44. https://doi.org/10.1016/S1388-2457(99)00210-2
  • Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). Oxford University Press.
  • De Santo, A., Rawski, J., Yazdani, A. M., & Drury, J. E. (2019). Quantified sentences as a window into prediction and priming: An ERP study. In E. Ronai, L. Stigliano, & Y. Sun (Eds.), Proceedings of the fifty-fourth annual meeting of the Chicago linguistic society (pp. 85–98). Chicago Linguistic Society.
  • Embick, D., & Poeppel, D. (2015). Towards a computational(ist) neurobiology of language: Correlational, integrated and explanatory neurolinguistics. Language, Cognition and Neuroscience, 30(4), 357–366. https://doi.org/10.1080/23273798.2014.980750
  • Eriksen, B. A., & Eriksen, C. W. (1966). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143–149. https://doi.org/10.3758/BF03203267
  • Feigenson, L. (2005). A double-dissociation in infants' representations of object arrays. Cognition, 95, B37–B48. https://doi.org/10.1016/j.cognition.2004.07.006
  • Fiebach, C. J., Schlesewsky, M., & Friederici, A. D. (2001). Syntactic working memory and the establishment of filler-gap dependencies: Insights from ERPs and fMRI. Journal of Psycholinguistic Research, 30, 321–338. https://doi.org/10.1023/A:1010447102554
  • Fiebach, C. J., Schlesewsky, M., & Friederici, A. D. (2002). Separating syntactic memory costs and syntactic integration costs during parsing: The processing of German WH-questions. Journal of Memory and Language, 47, 250–272. https://doi.org/10.1016/S0749-596X(02)00004-9
  • Freunberger, D., & Nieuwland, M. S. (2016). Incremental comprehension of spoken quantifier sentences: Evidence from brain potentials. Brain Research, 1646, 475–481. https://doi.org/10.1016/j.brainres.2016.06.035
  • Fukuda, K., Mance, I., & Vogel, E. K. (2015). α power modulation and event-related slow wave provide dissociable correlates of visual working memory. Journal of Neuroscience, 35, 14009–14016. https://doi.org/10.1523/JNEUROSCI.5003-14.2015
  • García-Larrea, L., & Cézanne-Bert, G. (1998). P3, positive slow wave and working memory load: A study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology, 108, 260–273. https://doi.org/10.1016/S0168-5597(97)00085-3
  • Hackl, M. (2009). On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics, 17, 63–98. https://doi.org/10.1007/s11050-008-9039-x
  • Hagoort, P. (2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15, 883–899. https://doi.org/10.1162/089892903322370807
  • Harker, K. T., & Connolly, J. F. (2007). Assessment of visual working memory using event-related potentials. Clinical Neurophysiology, 118, 2479–2488. https://doi.org/10.1016/j.clinph.2007.07.026
  • Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation. Addison-Wesley.
  • Horn, L. R. (1972). On the semantic properties of logical operators in english [PhD thesis]. UCLA.
  • Hubbard, R. J., Rommers, J., Jacobs, C. L., & Federmeier, K. D. (2019). Downstream behavioral and electrophysiological consequences of word prediction on recognition memory. Frontiers in Human Neuroscience, 13, 291. https://doi.org/10.3389/fnhum.2019.00291
  • Hunter, T., & Lidz, J. (2013). Conservativity and learnability of determiners. Journal of Semantics, 30, 315–334. https://doi.org/10.1093/jos/ffs014
  • Hunter, T., Lidz, J., Odic, D., & Wellwood, A. (2017). On how verification tasks are related to verification procedures: A reply to Kotek et al. Natural Language Semantics, 25, 91–107. https://doi.org/10.1007/s11050-016-9130-7
  • Hunt III, L., Politzer-Ahles, S., Gibson, L., Minai, U., & Fiorentino, R. (2013). Pragmatic inferences modulate N400 during sentence comprehension: Evidence from picture–sentence verification. Neuroscience Letters, 534, 246–251. https://doi.org/10.1016/j.neulet.2012.11.044
  • Isaac, A. M. C., Szymanik, J., & Verbrugge, R. (2014). Logic and complexity in cognitive science. In A. Baltag & S. Smets (Eds.), Johan van Benthem on logic and information dynamics (pp. 787–824). Springer.
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge University Press.
  • Just, M. A. (1974). Comprehending quantified sentences: The relation between sentence-picture and semantic memory verification. Cognitive Psychology, 6, 216–236. https://doi.org/10.1016/0010-0285(74)90011-5
  • Just, M. A., & Carpenter, P. A. (1971). Comprehension of negation with quantification. Journal of Verbal Learning and Verbal Behavior, 10, 244–253. https://doi.org/10.1016/S0022-5371(71)80051-8
  • Kanazawa, M. (2013). Monadic quantifiers recognized by deterministic pushdown automata. In M. Aloni, M. Franke, & F. Roelofsen (Eds.), Proceedings of the 19th amsterdam colloquium (pp. 139–146).
  • Keenan, E., & Paperno, D. (2017). Overview. In D. Paperno & E. Keenan (Eds.), Handbook of quantifiers in natural language: Volume II (pp. 995–1004). Springer.
  • Keenan, E., & Stavi, J. (1986). A semantic characterization of natural language determiners. Linguistics and Philosophy, 9, 253–326. https://doi.org/10.1007/BF00630273
  • King, J. W., & Kutas, M. (1995). Who did what and when? Using word- and clause-Level ERPs to monitor working memory usage in reading. Journal of Cognitive Neuroscience, 7, 376–395. https://doi.org/10.1162/jocn.1995.7.3.376
  • Kluender, J. W., & Kutas, M. (1995). Bridging the gap: Evidence from ERPs on the processing of unbounded dependencies. Journal of Cognitive Neuroscience, 5, 196–214. https://doi.org/10.1162/jocn.1993.5.2.196
  • Knoeferle, P., Urbach, T. P., & Kutas, M. (2011). Comprehending how visual context influences incremental sentence processing: Insights from ERPs and picture-sentence verification. Psychophysiology, 48, 495–506. https://doi.org/10.1111/psyp.2011.48.issue-4
  • Knoeferle, P., Urbach, T. P., & Kutas, M. (2014). Different mechanisms for role relations versus verb–action congruence effects: Evidence from ERPs in picture–sentence verification. Acta Psychologica, 152, 133–148. https://doi.org/10.1016/j.actpsy.2014.08.004
  • Knowlton, T., Hunter, T., Odic, D., Wellwood, A., Halberda, J., Pietroski, P., & Lidz, J. (2021). Linguistic meanings as cognitive instructions. Annals of the New York Academy of Sciences, 1500(1), 134–144. https://doi.org/10.1111/nyas.14618.
  • Kounios, J., & Holcomb, P. (1992). Structure and process in semantic memory: Evidence from event-Related brain potentials and reaction times. Journal of Experimental Psychology: General, 121(4), 459–479. https://doi.org/10.1037/0096-3445.121.4.459
  • Kuperberg, G. R. (2016). Separate streams or probabilistic inference? What the N400 can tell us about the comprehension of events. Language, Cognition and Neuroscience, 31, 602–616. https://doi.org/10.1080/23273798.2015.1130233
  • Kusak, G., Grune, K., Hagendorf, H., & Metz, A.-M. (2000). Updating of working memory in a running memory task: An event-related potential study. International Journal of Psychophysiology, 39, 51–65. https://doi.org/10.1016/S0167-8760(00)00116-1
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
  • Lefebvre, C., Vachon, F., Grimault, S., Thibault, J., Guimond, S., Peretz, I., R. J. Zatorre, & Jolicœur, P. (2013). Distinct electrophysiological indices of maintenance in auditory and visual short-term memory. Neuropsychologia, 51, 2939–2952. https://doi.org/10.1016/j.neuropsychologia.2013.08.003
  • Lefebvre, C. D., Marchand, Y., Eskes, G. A., & Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116, 1665–1680. https://doi.org/10.1016/j.clinph.2005.03.015
  • Levinson, S. C. (1983). Pragmatics. Cambridge University Press.
  • Levinson, S. C. (2000). Presumptive meanings: The theory of generalized conversational implicature. The MIT Press.
  • Lewis, S., & Phillips, C. (2015). Aligning grammatical theories and language processing models. Journal of Psycholinguistic Research, 44(1), 27–46. https://doi.org/10.1007/s10936-014-9329-z
  • Lidz, J., Pietroski, P., Halberda, J., & Hunter, T. (2011). Interface transparency and the psychosemantics of most. Natural Language Semantics, 19, 227–256. https://doi.org/10.1007/s11050-010-9062-6
  • Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). The MIT Press.
  • Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100–108. https://doi.org/10.1016/j.neubiorev.2016.01.003
  • Marchand, Y., D'Arcy, R. C. N., & Connolly, J. F. (2002). Linking neurophysiological and neuropsychological measures for aphasia assessment. Clinical Neurophysiology, 113, 1715–1722. https://doi.org/10.1016/S1388-2457(02)00224-9
  • Marchand, Y., Lefebvre, C. D., & Connolly, J. F. (2006). Correlating digit span performance and event-related potentials to assess working memory. International Journal of Psychophysiology, 62, 280–289. https://doi.org/10.1016/j.ijpsycho.2006.05.007
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.
  • Matthewson, L. (2001). Quantification and the nature of crosslinguistic variation. Natural Language Semantics, 9, 145–189. https://doi.org/10.1023/A:1012492911285
  • McEvoy, L. K., Smith, M. E., & Gervins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8, 563–574. https://doi.org/10.1093/cercor/8.7.563
  • Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Non-Classical Logics, 8, 107–121. https://doi.org/10.1080/11663081.1998.10510934
  • Müller, H. M., King, J. W., & Kutas, M. (1997). Event-related potentials elicited by spoken relative clauses. Cognitive Brain Research, 5, 193–203. https://doi.org/10.1016/S0926-6410(96)00070-5
  • Münte, T. F., Schiltz, K., & Kutas, M. (1998). When temporal terms belie conceptual order. Nature, 395, 71–73. https://doi.org/10.1038/25731
  • Neath, I., Saint-Aubin, J., Bireta, T. J., Gabel, A. J., Hudson, C. G., & A. M. Surprenant (2019). Short- and long-term memory tasks predict working memory performance, and vice versa. Canadian Journal of Experimental Psychology, 73, 79–93. https://doi.org/10.1037/cep0000157
  • Nieuwland, M. S. (2016). Quantification, prediction, and the online impact of sentence truth-Value: Evidence from event-Related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(2), 316–334. https://doi.org/10.1037/xlm0000173
  • Noveck, I. A., & Posada, A. (2003). Characterizing the time course of an implicature: An evoked potentials study. Brain and Language, 85(2), 203–210. https://doi.org/10.1016/S0093-934X(03)00053-1
  • Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives, 12, 223–229. https://doi.org/10.1111/cdep.2018.12.issue-4
  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011. https://doi.org/10.1155/2011/156869
  • Partee, B. H. (2013). The starring role of quantifiers in the history of formal semantics. In V. Punčochář, & P. Šarný (Eds.), The logica yearbook 2012 (pp. 113–136). College Publications.
  • Pelosi, L., Hayward, M., & Blumhardt, L. D. (1995). Is ‘memory-scanning’ time in the Sternberg paradigm reflected in the latency of event-related potentials?. Electroencephalography and Clinical Neurophysiology, 96, 44–55. https://doi.org/10.1016/0013-4694(94)00163-F
  • Pelosi, L., Hayward, M., & Blumhardt, L. D. (1998). Which event-related potentials reflect memory processing in a digit-probe identification task?. Cognitive Brain Research, 6, 205–218. https://doi.org/10.1016/S0926-6410(97)00032-3
  • Pelosi, L., Holly, M., Slade, T., Hayward, M., Barrett, G., & Blumhardt, L. D. (1992). Wave form variations in auditory event-related potentials evoked by a memory-scanning task and their relationship with tests of intellectual function. Electroencephalography and Clinical Neurophysiology, 84, 344–352. https://doi.org/10.1016/0168-5597(92)90087-R
  • Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Oxford University Press.
  • Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. https://doi.org/10.1037/h0049234
  • Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The meaning of ‘Most’: Semantics, numerosity and psychology. Mind and Language, 24, 554–585. https://doi.org/10.1111/mila.2009.24.issue-5
  • Pietroski, P., Lidz, J., Hunter, T., Odic, D., & Halberda, J. (2011). Seeing what you mean, mostly. In J. Runner (Ed.), Experiments at the interfaces, volume 37 of syntax and semantics (pp. 181–217). Brill.
  • Pijnacker, J., Geurts, B., van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2011). Reasoning with exceptions: An event-related brain potentials study. Journal of Cognitive Neuroscience, 23, 471–480. https://doi.org/10.1162/jocn.2009.21360
  • Politzer-Ahles, S., Fiorentino, R., Jiang, X., & Zhou, X. (2013). Distinct neural correlates for pragmatic and semantic meaning processing: An event-related potential investigation of scalar implicature processing using picture-sentence verification. Brain Research, 1490. https://doi.org/10.1016/j.brainres.2012.10.042
  • Quinlan, J. A., Neath, I., & Surprenant, A. M. (2015). Positional uncertainty in the Brown-Peterson paradigm. Canadian Journal of Experimental Psychology, 69, 64–71. https://doi.org/10.1037/cep0000038
  • Rai, M. K., & Harris, R. J. (2013). The modified Brown-Peterson task: A tool to directly compare children and adult's working memory. The Journal of Genetic Psychology, 174, 153–169. https://doi.org/10.1080/00221325.2011.653839
  • Ratcliff, R., Sederberg, P. B., Smith, T. A., & Childers, R. (2016). A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength. Neuropsychologia, 93, 128–141. https://doi.org/10.1016/j.neuropsychologia.2016.09.026
  • Rösler, F., Heil, M., & Röder, B. (1997). Slow negative brain potentials as reflections of specific modular resources of cognition. Biological Psychology, 45, 109–141. https://doi.org/10.1016/S0301-0511(96)05225-8
  • Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26, 709–728. https://doi.org/10.1017/S0140525X03000165
  • Ruchkin, D. S., Johnson, R., Canoune, H., & Ritter, W. (1990). Short-term memory storage and retention: An event-related brain potential study. Electroencephalography and Clinical Neurophysiology, 76, 419–439. https://doi.org/10.1016/0013-4694(90)90096-3
  • Ruchkin, D. S., Johnson, R., Grafman, J., Canoune, H., & Ritter, W. (1992). Distinctions and similarities among working memory processes: An event-related potential study. Cognitive Brain Research, 1, 53–66. https://doi.org/10.1016/0926-6410(92)90005-C
  • Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. TRENDS in Cognitive Sciences, 11, 251–257. https://doi.org/10.1016/j.tics.2007.04.004
  • Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595–598. https://doi.org/10.1038/33396
  • Spychalska, M., Kontinen, J., Noveck, I., Reimer, L., & Werning, M. (2019). When numbers are not exact: Ambiguity and prediction in the processing of sentences with bare numerals. Journal of Experimental Psychology: Learning Memory and Cognition, 45(7), 1177–1204. https://doi.org/10.1037/xlm0000644
  • Spychalska, M., Kontinen, J., & Werning, M. (2016). Investigating scalar implicatures in a truth-value judgement task: Evidence from event-related brain potentials. Language, Cognition and Neuroscience, 31, 817–840. https://doi.org/10.1080/23273798.2016.1161806
  • Steinert-Threlkeld, S., & Szymanik, J. (2019). Learnability and semantic universals. Semantics and Pragmatics, 12. https://doi.org/10.3765/sp.12.4
  • Sternberg, S. (1966). High-Speed scanning in human memory. Science (New York, N.Y.), 153, 652–654. https://doi.org/10.1126/science.153.3736.652
  • Szymanik, J. (2016). Quantifiers and cognition: Logical and computational perspectives. Springer.
  • Szymanik, J., & Zajenkowski, M. (2010). Quantifiers and working memory. In M. Aloni, H. Bastiaanse, T. de Jager, P. van Ormondt, & K. Schulz, (Eds.), Amsterdam colloquium 2009 (Vol. 25, pp. 456–464). Springer Verlag.
  • Szymanik, J., & Zajenkowski, M. (2011). Contribution of working memory in parity and proportional judgments. Belgian Journal of Linguistics, 25, 176–194. https://doi.org/10.1075/bjl
  • Talmina, N., Kochari, A., & Szymanik, J. (2017). Quantifiers and verification strategies: Connecting the dots. In A. Cremers, T. van Gessel, & F. Roelofsen (Eds.), Proceedings of the 21st amsterdam colloquium (pp. 465–473).
  • Tomaszewicz, B. (2011). Verification strategies for two majority quantifiers in Polish. In I. Reich, E. Horch, & D. Pauly (Eds.), Proceedings of sinn und bedeutung 15 (pp. 597–612).
  • Urbach, T. P., DeLong, K. A., & Kutas, M. (2015). Quantifiers are incrementally interpreted in context, more than less. Journal of Memory and Language, 83, 79–96. https://doi.org/10.1016/j.jml.2015.03.010
  • Urbach, T. P., & Kutas, M. (2010). Quantifiers more or less quantify on-line: ERP evidence for partial incremental interpretation. Journal of Memory and Language, 63(2), 158–179. https://doi.org/10.1016/j.jml.2010.03.008
  • van Benthem, J. (1986). Essays in logical semantics. D. Reidel Publishing Company.
  • van Berkum, J. J. A., Brown, C. M., & Hagoort, P. (1999). Early referential context effects in sentence processing: Evidence from event-Related brain potentials. Journal of Memory and Language, 41, 147–182. https://doi.org/10.1006/jmla.1999.2641
  • van Berkum, J. J. A., Brown, C. M., Hagoort, P., & Zwitserlood, P. (2003). Event-related brain potentials reflect discourse-referential ambiguity in spoken language comprehension. Psychophysiology, 40, 235–248. https://doi.org/10.1111/psyp.2003.40.issue-2
  • van de Pol, I., Lodder, P., van Maanen, L., Steinert-Threlkeld, S., & Szymanik, J. (2023). Quantifiers satisfying semantic universals have shorter minimal description length. Cognition, 232, Article 105150. https://doi.org/10.1016/j.cognition.2022.105150
  • van Lambalgen, M., & Hamm, F. (2005). The proper treatment of events. Blackwell.
  • Van Petten, C., Coulson, S., Rubin, S., Plante, E., & Parks, M. (1999). Time course of word identification and semantic integration in spoken language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 394–417. https://doi.org/10.1037/0278-7393.25.2.394
  • van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984. https://doi.org/10.1080/03640210801897856
  • van Rooij, I., & Baggio, G. (2020). Theory development requires an epistemological sea change. Psychological Inquiry, 31(4), 321–325. https://doi.org/10.1080/1047840X.2020.1853477
  • van Rooij, I., & Baggio, G. (2021). Theory before the test: How to build high-verisimilitude explanatory theories in psychological science. Perspectives on Psychological Science, 682–697. https://doi.org/10.1177/1745691620970604
  • van Rooij, I., Blokpoel, M., Kwisthout, J., & Wareham, T. (2019). Cognition and intractability: A guide to classical and parameterized complexity analysis. Cambridge Univeristy Press.
  • Vissers, C. T. W. M., Kolk, H. K. J., van de Meerendonk, N., & D. J. Chwilla (2008). Monitoring in language perception: Evidence from ERPs in a picture–sentence matching task. Neuropsychologia, 46, 967–982. https://doi.org/10.1016/j.neuropsychologia.2007.11.027
  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. https://doi.org/10.1038/nature02447
  • Vos, S. H., Gunter, T. C., Kolk, H. H. J., & Mulder, G. (2001). Working memory constraints on syntactic processing: An electrophysiological investigation. Psychophysiology, 38, 41–63. https://doi.org/10.1111/psyp.2001.38.issue-1
  • Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence–picture matching electrified. Neuropsychologia, 45, 716–740. https://doi.org/10.1016/j.neuropsychologia.2006.08.016
  • Yang, H., Laforge, G., Stojanoski, B., Nichols, E. S., McRae, K., & Köhler, S. (2019). Late positive complex in event-related potentials tracks memory signals when they are decision relevant. Scientific Reports, 9, 9469. https://doi.org/10.1038/s41598-019-45880-y
  • Zajenkowski, M., Styła, R., & Szymanik, J. (2011). A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. Journal of Communication Disorders, 44, 595–600. https://doi.org/10.1016/j.jcomdis.2011.07.005
  • Zajenkowski, M., & Szymanik, J. (2013). MOST intelligent people are accurate and SOME fast people are intelligent. Intelligence, working memory, and semantic processing of quantifiers from a computational perspective. Intelligence, 41(5), 456–466. https://doi.org/10.1016/j.intell.2013.06.020
  • Zajenkowski, M., Szymanik, J., & Garraffa, M. (2014). Working memory mechanism in proportional quantifier verification. Journal of Psycholinguistic Research, 43(6), 839–853. https://doi.org/10.1007/s10936-013-9281-3
  • Zwaan, R. A. (2015). Situation models, mental simulations, and abstract concepts in discourse comprehension. Psychonomic Bulletin & Review, 23, 1028–1034. https://doi.org/10.3758/s13423-015-0864-x
  • Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, 123, 162–185. https://doi.org/10.1037/0033-2909.123.2.162