114
Views
0
CrossRef citations to date
0
Altmetric
Regular Article

Rhythmic priming of syntactic processing in Jabberwocky: a short-lived effect

, , &
Received 12 Dec 2022, Accepted 16 May 2024, Published online: 03 Jul 2024

References

  • Altmann, C. F., Bülthoff, H. H., & Kourtzi, Z. (2003). Perceptual organization of local elements into global shapes in the human visual cortex. Current Biology, 13(4), 342–349. https://doi.org/10.1016/S0960-9822(03)00052-6
  • Asano, R., Boeckx, C., & Seifert, U. (2021). Hierarchical control as a shared neurocognitive mechanism for language and music. Cognition, 216, 104847. https://doi.org/10.1016/j.cognition.2021.104847
  • Audacity Team. (2021). Audacity(R): Free Audio Editor and Recorder [Computer application] (Version 3.0.0). Audacity® software is copyright © 1999-2021 Audacity Team. Web site: https://audacityteam.org/ It is free software distributed under the terms of the GNU General Public License. The name Audacity® is a registered trademark
  • Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., & Al, E. (2015). Package “lme4”:Linear Mixed-Effects Models Using ‘Eigen’ and S4. https://cran.r-project.org/web/packages/lme4/index.html
  • Bedoin, N., Brisseau, L., Molinier, P., Roch, D., & Tillmann, B. (2016). Temporally regular musical primes facilitate subsequent syntax processing in children with Specific Language Impairment. Frontiers in Neuroscience, 10, 1–11. https://doi.org/10.3389/fnins.2016.00245
  • Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive Psychology, 23(1), 45–93. http://doi.org/10.1016/0010-0285(91)90003-7
  • Canette, L. H., Bedoin, N., Lalitte, P., Bigand, E., Tillmann, B., Bedoin, N., Lalitte, P., & Bigand, E. (2020). The regularity of rhythmic primes influences syntax processing in adults. Auditory Perception & Cognition, 2(3), 163–179. https://doi.org/10.1080/25742442.2020.1752080
  • Canette, L. H., Fiveash, A., Krzonowski, J., Corneyllie, A., Lalitte, P., Thompson, D., Trainor, L., Bedoin, N., & Tillmann, B. (2020). Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls. Neuropsychologia, 138. https://doi.org/10.1016/j.neuropsychologia.2019.107324
  • Canette, L. H., Lalitte, P., Bedoin, N., Pineau, M., Bigand, E., & Tillmann, B. (2020). Rhythmic and textural musical sequences differently influence syntax and semantic processing in children. Journal of Experimental Child Psychology, 191, 104711. https://doi.org/10.1016/j.jecp.2019.104711
  • Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologica, 155, 43–50. https://doi.org/10.1016/j.actpsy.2014.12.002
  • Cason, N., Hidalgo, C., Isoard, F., Roman, S., & Schön, D. (2015). Rhythmic priming enhances speech production abilities: Evidence from prelingually deaf children. Neuropsychology, 29(1), 102–107. https://doi.org/10.1037/neu0000115
  • Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652–2658. https://doi.org/10.1016/j.neuropsychologia.2012.07.018
  • Chern, A., Tillmann, B., Vaughan, C., & Gordon, R. L. (2018). New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. Journal of Experimental Child Psychology, 173, 371–379. https://doi.org/10.1016/j.jecp.2018.04.007
  • Corriveau, K. H., & Goswami, U. (2009). Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat. Cortex, 45(1), 119–130. https://doi.org/10.1016/j.cortex.2007.09.008
  • Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158–164. https://doi.org/10.1038/nn.4186
  • E-Prime Inc. (2016). E-Prime 3.0.
  • Fitch, W. T., & Friederici, A. D. (2012). Artificial grammar learning meets formal language theory: An overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1933–1955. https://doi.org/10.1098/rstb.2012.0103
  • Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1316(1), 87–104. https://doi.org/10.1111/nyas.12406
  • Fiveash, A., Bedoin, N., Gordon, R. L., & Tillmann, B. (2021). Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders Anna. Neuropsychology. http://www.tjyybjb.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9987
  • Flaugnacco, E., Lopez, L., Terribili, C., Zoia, S., Buda, S., Tilli, S., Monasta, L., Montico, M., Sila, A., Ronfani, L., & Schön, D. (2014). Rhythm perception and production predict Reading abilities in developmental dyslexia. Frontiers in Human Neuroscience, 8, 1–14. https://doi.org/10.3389/fnhum.2014.00392
  • Franck, J., Colonna, S., & Rizzi, L. (2015). Task-dependency and structure-dependency in number interference effects in sentence comprehension. Frontiers in Psychology, 6. http://doi.org/10.3389/fpsyg.2015.00349
  • Franck, J., Lassi, G., Frauenfelder, U. H., & Rizzi, L. (2006). Agreement and movement: A syntactic analysis of attraction. Cognition, 101(1), 173–216. https://doi.org/10.1016/j.cognition.2005.10.003
  • Franck, J., Soare, G., Frauenfelder, U. H., & Rizzi, L. (2010). Object interference in subject-verb agreement: The role of intermediate traces of movement. Journal of Memory and Language, 62(2), 166–182. https://doi.org/10.1016/j.jml.2009.11.001
  • Franck, J., & Wagers, M. (2020). Hierarchical structure and memory mechanisms in agreement attraction. PLoS One, 15(5), e0232163. https://doi.org/10.1371/journal.pone.0232163
  • Fujii, S., & Wan, C. Y. (2014). The role of rhythm in speech and language rehabilitation: The SEP hypothesis. Frontiers in Human Neuroscience, 8, 1–15. https://doi.org/10.3389/fnhum.2014.00777
  • Glushko, A., Poeppel, D., & Steinhauer, K. (2020). Overt and covert prosody are reflected in neurophysiological responses previously attributed to grammatical processing. BioRxiv. https://doi.org/10.1101/2020.09.17.301994
  • Gordon, R. L., Shivers, C. M., Wieland, E. A., Kotz, S. A., Yoder, P. J., & Devin Mcauley, J. (2015). Musical rhythm discrimination explains individual differences in grammar skills in children. Developmental Science, 18(4), 635–644. https://doi.org/10.1111/desc.12230
  • Grahn, J. A., & Brett, M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45(1), 54–61. https://doi.org/10.1016/j.cortex.2008.01.005
  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2010). The faculty of language: What is it, who has it, and how did it evolve? The Evolution of Human Language: Biolinguistic Perspectives, 298, 14–42. https://doi.org/10.1017/CBO9780511817755.002
  • Heard, M., & Lee, Y. S. (2019). Shared neural resources of rhythm and syntax: An ALE Meta-Analysis. BioRxiv, 137, 822676. https://doi.org/10.1101/822676
  • Jackendoff, R. (2009). Parallels and nonparallels between language and music. Music Perception, 26(3), 195–204. https://doi.org/10.1525/mp.2009.26.3.195
  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459–491. https://doi.org/10.1037/0033-295X.96.3.459
  • Kaufeld, G., Bosker, H. R., Alday, P., Meyer, A., & Martin, A. (2020). Linguistic structure and meaning organize neural oscillations into a content-specific hierarchy. Journal of Neuroscience, 40(49), 9467–9475. https://doi.org/10.1101/2020.02.05.935676
  • Kotz, S. A., & Gunter, T. C. (2015). Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease? Annals of the New York Academy of Sciences, 1337(1), 62–68. https://doi.org/10.1111/nyas.12657
  • Kotz, S. A., & Schmidt-Kassow, M. (2015). Basal ganglia contribution to rule expectancy and temporal predictability in speech. Cortex, 68, 48–60. https://doi.org/10.1016/j.cortex.2015.02.021
  • Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392–399. https://doi.org/10.1016/j.tics.2010.06.005
  • Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990. https://doi.org/10.1016/j.cortex.2009.02.010
  • Kotz, S. A., Stockert, A., & Schwartze, M. (2014). Cerebellum, temporal predictability and the updating of a mental model. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130403, https://doi.org/10.1098/rstb.2013.0403
  • Ladányi, E., Lukács, Á., & Gervain, J. (2021). Does rhythmic priming improve grammatical processing in Hungarian-speaking children with and without developmental language disorder? Developmental Science, 24(6), 1–12. https://doi.org/10.1111/desc.13112
  • Ladányi, E., Persici, V., Fiveash, A., Tillmann, B., & Gordon, R. L. (2020). Is atypical rhythm a risk factor for developmental speech and language disorders? WIRES Cognitive Science, 11(5), 1–32. https://doi.org/10.1002/wcs.1528
  • Large, E. W., Herrera, J. A., & Velasco, M. J. (2015). Neural networks for beat perception in musical rhythm. Frontiers in Systems Neuroscience, 9, 1–14. https://doi.org/10.3389/fnsys.2015.00159
  • Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159. https://doi.org/10.1037/0033-295X.106.1.119
  • Law, L. N. C., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PLoS One, 7(12), e52508. https://doi.org/10.1371/journal.pone.0052508
  • Lee, Y. S., Ahn, S., Holt, R. F., & Schellenberg, E. G. (2020). Rhythm and syntax processing in school-age children. Developmental Psychology, 56(9), 1632–1641. https://doi.org/10.1037/dev0000969
  • LimeSurvey Project Team / Schmitz, C. (2015). LimeSurvey: An Open Source survey tool (2.00). In limesurvey project, Hamburg, Germany. http://www.limesurvey.org
  • Martins, M. J. D., Fischmeister, F. P. S., Gingras, B., Bianco, R., Puig-Waldmueller, E., Villringer, A., Fitch, W. T., & Beisteiner, R. (2020). Recursive music elucidates neural mechanisms supporting the generation and detection of melodic hierarchies. Brain Structure and Function, 225(7), 1997–2015. https://doi.org/10.1007/s00429-020-02105-7
  • Martins, M. D., Gingras, B., Puig-Waldmueller, E., & Fitch, W. T. (2017). Cognitive representation of “musical fractals”: Processing hierarchy and recursion in the auditory domain. Cognition, 161, 31–45. https://doi.org/10.1016/j.cognition.2017.01.001
  • Neurobehavioral Systems, Inc. (2021). Presentation® software (18.0). www.neurobs.com
  • Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly. Journal of Memory and Language, 31(6), 785–806. https://doi.org/10.1016/0749-596X(92)90039-Z
  • Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 1–14. https://doi.org/10.3389/fnsys.2014.00057
  • Poudrier, E. (2020). The influence of rate and accentuation on subjective rhythmization. Music Perception, 38(1), 27–45. https://doi.org/10.1525/mp.2020.38.1.27
  • Przybylski, L., Bedoin, N., Krifi-Papoz, S., Herbillon, V., Roch, D., Léculier, L., Kotz, S. A., & Tillmann, B. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology, 27(1), 121–131. https://doi.org/10.1037/a0031277
  • R. C. Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Roncaglia-Denissen, M. P., Schmidt-Kassow, M., Heine, A., & Kotz, S. A. (2015). On the impact of L2 speech rhythm on syntactic ambiguity resolution. Second Language Research, 31(2), 157–178. https://doi.org/10.1177/0267658314554497
  • Roncaglia-Denissen, M. P., Schmidt-Kassow, M., & Kotz, S. A. (2013). Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence. PLoS One. 8(2), e56000. https://doi.org/10.1371/journal.pone.0056000
  • Rothermich, K., & Kotz, S. A. (2013). Predictions in speech comprehension: FMRI evidence on the meter-semantic interface. NeuroImage, 70, 89–100. https://doi.org/10.1016/j.neuroimage.2012.12.013
  • Rothermich, K., Schmidt-Kassow, M., & Kotz, S. A. (2012). Rhythm’s gonna get you: Regular meter facilitates semantic sentence processing. Neuropsychologia, 50(2), 232–244. https://doi.org/10.1016/j.neuropsychologia.2011.10.025
  • Schwartze, M., Farrugia, N., & Kotz, S. A. (2013). Dissociation of formal and temporal predictability in early auditory evoked potentials. Neuropsychologia, 51(2), 320–325. https://doi.org/10.1016/j.neuropsychologia.2012.09.037
  • Schwartze, M., & Kotz, S. A. (2016). Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain and Language, 161, 28–32. https://doi.org/10.1016/j.bandl.2015.08.005
  • Slater, J., & Kraus, N. (2016). The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17(1), 79–87. https://doi.org/10.1007/s10339-015-0740-7
  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149. http://doi.org/10.3758/BF03207704
  • Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Golumbic, E. Z. (2017). Neural entrainment to the beat: The “missing-pulse” phenomenon. The Journal of Neuroscience, 37(26), 6331–6341. https://doi.org/10.1523/JNEUROSCI.2500-16.2017
  • Tierney, A., & Kraus, N. (2014). Auditory-motor entrainment and phonological skills: Precise auditory timing hypothesis (PATH). Frontiers in Human Neuroscience, 8, 1–9. https://doi.org/10.3389/fnhum.2014.00949
  • Villata, S., Franck, J., Villata, S., & Franck, J. (2020). Similarity-Based interference in agreement comprehension and production: Evidence from object agreement. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 170–188. https://doi.org/10.1037/xlm0000718
  • Villata, S., Tabor, W., & Franck, J. (2018). Encoding and retrieval interference in sentence comprehension: Evidence from agreement. Frontiers in Psychology, 9, 1–16. https://doi.org/10.3389/fpsyg.2018.00002
  • Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Representations and processes. Journal of Memory and Language, 61(2), 206–237. https://doi.org/10.1016/j.jml.2009.04.002
  • Woodruff Carr, K., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and Reading readiness in preschoolers. Proceedings of the National Academy of Sciences, 111(40), 14559–14564. https://doi.org/10.1073/pnas.1406219111
  • Yates, K. M., Moore, D. R., Amitay, S., & Barry, J. G. (2019). Sensitivity to melody, rhythm, and beat in supporting speech-in-noise perception in young adults. Ear & Hearing, 40(2), 358–367. https://doi.org/10.1097/AUD.0000000000000621
  • Zentner, M., & Strauss, H. (2017). Assessing musical ability quickly and objectively: development and validation of the Short-PROMS and the Mini-PROMS. Annals of the New York Academy of Sciences, 1400(1), 33–45. https://doi.org/10.1111/nyas.13410
  • Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L., & Meyer-Lindenberg, A. (2008). Know your place: Neural processing of social hierarchy in humans. Neuron, 58(2), 273–283. https://doi.org/10.1016/j.neuron.2008.01.025