162
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Forward and backward spatial recall in Parkinson's disease and matched controls: A 1-year follow-up study

ORCID Icon, , & ORCID Icon

References

  • Baddeley, A. D. (1986). Working memory. Oxford University Press.
  • Baddeley, A. D. (2000). Short-term and working memory. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 77–92). Oxford University Press.
  • Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47–89). Academic Press.
  • Barone, P., Antonini, A., Colosimo, C., Marconi, R., Morgante, L., Avarello, T. P., Bottacchi, E., Cannas, A., Ceravolo, G., Ceravolo, R., Cicarelli, G., Gaglio, R. M., Giglia, R. M., Iemolo, F., Manfredi, M., Meco, G., Nicoletti, A., Pederzoli, M., Petrone, A., … Dotto, P. D. (2009). The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease. Movement Disorders, 24(11), 1641–1649. https://doi.org/10.1002/mds.22643
  • Berch, D. B., Krikorian, R., & Huha, E. M. (1998). The Corsi Block-Tapping Task: Methodological and theoretical considerations. Brain and Cognition, 38(3), 317–338. https://doi.org/10.1006/brcg.1998.1039
  • Boller, F., Passafiume, D., Keefe, N. C., Rogers, K., Morrow, L., & Kim, Y. (1984). Visuospatial Impairment in Parkinson's disease. Role of perceptual and motor factors. Archives of Neurology, 41(5), 485–490. https://doi.org/10.1001/archneur.1984.04050170031011
  • Bor, D., Duncan, J., Lee, A. C. H., Parr, A., & Owen, A. M. (2006). Frontal lobe involvement in spatial span: Converging studies of normal and impaired function. Neuropsychologia, 44(2), 229–237. https://doi.org/10.1016/j.neuropsychologia.2005.05.010
  • Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson's disease-related pathology. Cell and Tissue Research, 318(1), 121–134. https://doi.org/10.1007/s00441-004-0956-9
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
  • Brunetti, R., Del Gatto, C., & Delogu, F. (2014). eCorsi: Implementation and testing of the Corsi Block-Tapping task for digital tablets. Frontiers in Psychology, 5, 939. https://doi.org/10.3389/fpsyg.2014.00939
  • Buchsbaum, B. R., & D'Esposito, M. (2019). A sensorimotor view of verbal working memory. Cortex, 112, 134–148. https://doi.org/10.1016/j.cortex.2018.11.010
  • Burn, D. J., Rowan, E. N., Allan, L. M., Molloy, S., O’Brien, J. T., & McKeith, I. G. (2006). Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. Journal of Neurology, Neurosurgery & Psychiatry, 77(5), 585–589. https://doi.org/10.1136/jnnp.2005.081711
  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26. https://doi.org/10.1093/cercor/9.1.20
  • Chaudhuri, K. R., Pal, S., DiMarco, A., Whately-Smith, C., Bridgman, K., Mathew, R., Pezzela, F. R., Forbes, A., Högl, B., & Trenkwalder, C. (2002). The Parkinson's Disease Sleep Scale: A new instrument for assessing sleep and nocturnal disability in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73(6), 629–635. https://doi.org/10.1136/jnnp.73.6.629
  • Chey, J., Lee, J., Kim, Y.-S., Kwon, S.-M., & Shin, Y.-M. (2002). Spatial working memory span, delayed response and executive function in schizophrenia. Psychiatry Research, 110(3), 259–271. https://doi.org/10.1016/S0165-1781(02)00105-1
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Cools, R., & D'Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028
  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain [Dissertation]. McGill University.
  • Crawford, T. J., Higham, S., Mayes, J., Dale, M., Shaunak, S., & Lekwuwa, G. (2013). The role of working memory and attentional disengagement on inhibitory control: Effects of aging and Alzheimer's disease. Age, 35(5), 1637–1650. https://doi.org/10.1007/s11357-012-9466-y
  • Crucian, G. P., & Okun, M. S. (2003). Visual-spatial ability in Parkinson's disease. Frontiers in Bioscience, 8, s992–s997. Retrieved from https://www.bioscience.org/2003/v8/s/1171/fulltext.htm https://doi.org/10.2741/1171
  • Dalrymple-Alford, J. C., MacAskill, M. R., Nakas, C. T., Livingston, L., Graham, C., Crucian, G. P., Melzer, T. R., Kirwan, J., Keenan, R., Wells, S., Porter, R. J., Watts, R., & Anderson, T. J. (2010). The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology, 75(19), 1717–1725. https://doi.org/10.1212/WNL.0b013e3181fc29c9
  • Deluca, J., & Chiaravalloti, N. D. (2003). Memory and learning in adults. In G. Goldstein & S. R. Beers (Eds.), Comprehensive handbook of psychological assessment (Vol. I, pp. 217–236). John Wiley & Sons, Inc.
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegner, J., & Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6802–6807. https://doi.org/10.1073/pnas.0901894106
  • Ell, S. W. (2013). Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease. Cognitive, Affective, & Behavioral Neuroscience, 13(4), 830–846. https://doi.org/10.3758/s13415-013-0176-4
  • Ell, S. W., Weinstein, A., & Ivry, R. B. (2010). Rule-based categorization deficits in focal basal ganglia lesion and Parkinson's disease patients. Neuropsychologia, 48(10), 2974–2986. https://doi.org/10.1016/j.neuropsychologia.2010.06.006
  • Fahn, S., & Elton, R. (1987). Members of the UPDRS Development Committee. Unified Parkinson's Disease Rating Scale. In S. Fahn, C. D. Marsden, D. B. Calne, & M. Goldstein (Eds.), Recent developments in Parkinson's disease (Vol. II, pp. 153–163). Macmillan Health Care Information.
  • Flannery, S. L., Jowett, T., Garvey, A., Cutfield, N. J., & Machado, L. (2018). Computerized testing in Parkinson's disease: Performance deficits in relation to standard clinical measures. Journal of Clinical and Experimental Neuropsychology, 40(10), 1062–1073. https://doi.org/10.1080/13803395.2018.1485880
  • Forsyth, B., Machado, L., Jowett, T., Jakobi, H., Garbe, K., Winter, H., & Glue, P. (2016). Effects of low dose ibogaine on subjective mood state and psychological performance. Journal of Ethnopharmacology, 189, 10–13. https://doi.org/10.1016/j.jep.2016.05.022
  • Fox, J., & Weisberg, S. (2019). An R companion to applied regression. SAGE Publications.
  • Galtier, I., Nieto, A., Barroso, J., & Lorenzo, J. N. (2009). Deterioro del aprendizaje visoespacial en la enfermedad de Parkinson [Visuospatial learning impairment in Parkinson disease]. Psicothema, 21(1), 21–26. Retrieved from < Go to ISI>://WOS:000262525000004
  • Galtier, I., Nieto, A., Lorenzo, J. N., & Barroso, J. (2014). Cognitive impairment in Parkinson's disease: more than a frontostriatal dysfunction. Spanish Journal of Psychology, 17, E68. https://doi.org/10.1017/sjp.2014.69
  • Galtier, I., Nieto, A., Lorenzo, J. N., & Barroso, J. (2016). Mild cognitive impairment in Parkinson's disease: Diagnosis and progression to dementia. Journal of Clinical and Experimental Neuropsychology, 38(1), 40–50. https://doi.org/10.1080/13803395.2015.1087465
  • Garcia-Diaz, A. I., Segura, B., Baggio, H. C., Marti, M. J., Valldeoriola, F., Compta, Y., Bargallo, N., Uribe, C., Campabadal, A., Abos, A., & Junque, C. (2018). Structural brain correlations of visuospatial and visuoperceptual tests in Parkinson's disease. Journal of the International Neuropsychological Society, 24(1), 33–44. https://doi.org/10.1017/s1355617717000583
  • Garcia-Diaz, A. I., Segura, B., Baggio, H. C., Uribe, C., Campabadal, A., Abos, A., Marti, M. J., Valldeoriola, F., Compta, Y., Bargallo, N., & Junque, C. (2018). Cortical thinning correlates of changes in visuospatial and visuoperceptual performance in Parkinson's disease: A 4-year follow-up. Parkinsonism & Related Disorders, 46, 62–68. https://doi.org/10.1016/j.parkreldis.2017.11.003
  • Gerton, B. K., Brown, T. T., Meyer-Lindenberg, A., Kohn, P., Holt, J. L., Olsen, R. K., & Berman, K. F. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42(13), 1781–1787. https://doi.org/10.1016/j.neuropsychologia.2004.04.023
  • Goebel, S., Mehdorn, H. M., & Leplow, B. (2010). Strategy instruction in Parkinson's disease: Influence on cognitive performance. Neuropsychologia, 48(2), 574–580. https://doi.org/10.1016/j.neuropsychologia.2009.10.020
  • Goetz, C. G., Nutt, J. G., & Stebbins, G. T. (2008). The Unified Dyskinesia Rating Scale: Presentation and clinimetric profile. Movement Disorders, 23(16), 2398–2403. https://doi.org/10.1002/mds.22341
  • Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26(1), 92–110. https://doi.org/10.1037/a0021483
  • Harrington, D. L., Castillo, G. N., Greenberg, P. A., Song, D. D., Lessig, S., Lee, R. R., & Rao, S. M. (2011). Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLOS One, 6(2), e17461. https://doi.org/10.1371/journal.pone.0017461
  • Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2(1), 64–78. https://doi.org/10.1037/1082-989X.2.1.64
  • Hester, R. L., Kinsella, G. J., & Ong, B. E. N. (2004). Effect of age on forward and backward span tasks. Journal of the International Neuropsychological Society, 10(4), 475–481. https://doi.org/10.1017/S1355617704104037
  • Hindle, J. V., Martyr, A., & Clare, L. (2014). Cognitive reserve in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism & Related Disorders, 20(1), 1–7. https://doi.org/10.1016/j.parkreldis.2013.08.010
  • Hu, M. T. M., Szewczyk-Królikowski, K., Tomlinson, P., Nithi, K., Rolinski, M., Murray, C., Talbot, K., Ebmeier, K. P., Mackay, C. E., & Ben-Shlomo, Y. (2014). Predictors of cognitive impairment in an early stage Parkinson's disease cohort. Movement Disorders, 29(3), 351–359. https://doi.org/10.1002/mds.25748
  • Humphries, M. D., Obeso, J. A., & Dreyer, J. K. (2018). Insights into Parkinson's disease from computational models of the basal ganglia. Journal of Neurology, Neurosurgery, and Psychiatry, 89(11), 1181–1188. https://doi.org/10.1136/jnnp-2017-315922
  • Jaroslawska, A. J., & Rhodes, S. (2019). Adult age differences in the effects of processing on storage in working memory: A meta-analysis. Psychology and Aging, 34(4), 512–530. https://doi.org/10.1037/pag0000358
  • Jenkins, L., Myerson, J., Joerding, J. A., & Hale, S. (2000). Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychology and Aging, 15(1), 157–175. https://doi.org/10.1037/0882-7974.15.1.157
  • Kandiah, N., Zhang, A., Cenina, A. R., Au, W. L., Nadkarni, N., & Tan, L. C. (2014). Montreal Cognitive Assessment for the screening and prediction of cognitive decline in early Parkinson's disease. Parkinsonism & Related Disorders, 20(11), 1145–1148. https://doi.org/10.1016/j.parkreldis.2014.08.002
  • Kang, J. M., Cho, Y.-S., Park, S., Lee, B. H., Sohn, B. K., Choi, C. H., Choi, J.-S., Jeong, H. Y., Cho, S.-J., Lee, J.-H., & Lee, J.-Y. (2018). Montreal cognitive assessment reflects cognitive reserve. BMC Geriatrics, 18(1), 261. https://doi.org/10.1186/s12877-018-0951-8
  • Kaplan, E. (1991). WAIS-R as a neuropsychological instrument (WAIS-R NI). Psychological Corporation.
  • Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. The Lancet. Neurology, 9(12), 1200–1213. https://doi.org/10.1016/S1474-4422(10)70212-X
  • Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2013). Cognitive impairment in Parkinson's disease: The dual syndrome hypothesis. Neuro-Degenerative Diseases, 11(2), 79–92. https://doi.org/10.1159/000341998
  • Kim, H. M., Nazor, C., Zabetian, C. P., Quinn, J. F., Chung, K. A., Hiller, A. L., Hu, S.-C., Leverenz, J. B., Montine, T. J., Edwards, K. L., & Cholerton, B. (2019). Prediction of cognitive progression in Parkinson's disease using three cognitive screening measures. Clinical Parkinsonism & Related Disorders, 1, 91–97. https://doi.org/10.1016/j.prdoa.2019.08.006
  • Lally, H., Hart, A. R., Bay, A. A., Kim, C., Wolf, S. L., & Hackney, M. E. (2020). Association between motor subtype and visuospatial and executive function in mild-moderate Parkinson disease. Archives of Physical Medicine and Rehabilitation, 101(9), 1580–1589. https://doi.org/10.1016/j.apmr.2020.05.018
  • Lam, B., Middleton, L. E., Masellis, M., Stuss, D. T., Harry, R. D., Kiss, A., & Black, S. E. (2013). Criterion and convergent validity of the Montreal Cognitive Assessment with screening and standardized neuropsychological testing. Journal of the American Geriatrics Society, 61(12), 2181–2185. https://doi.org/10.1111/jgs.12541
  • Lancia, S., Cofini, V., Carrieri, M., Ferrari, M., & Quaresima, V. (2018). Are ventrolateral and dorsolateral prefrontal cortices involved in the computerized Corsi block-tapping test execution? An fNIRS study. Neurophotonics, 5(1), 011019. https://doi.org/10.1117/1.NPh.5.1.011019
  • Lees, A. J., Hardy, J., & Revesz, T. (2009). Parkinson's disease. The Lancet, 373(9680), 2055–2066. https://doi.org/10.1016/S0140-6736(09)60492-X
  • Liu, W., Wang, C., He, T., Su, M., Lu, Y., Zhang, G., Münte, T. F., Jin, L., & Ye, Z. (2021). Substantia nigra integrity correlates with sequential working memory in Parkinson’s disease. The Journal of Neuroscience, 41(29), 6304–6313. https://doi.org/10.1523/JNEUROSCI.0242-21.2021
  • Luck, S. J. (2008). Visual short-term memory. In S. J. Luck & A. Hollingworth (Eds.), Visual memory (pp. 43–86). Oxford University Press.
  • Macizo, P., Soriano, M. F., & Paredes, N. (2016). Phonological and visuospatial working memory in autism spectrum disorders. Journal of Autism and Developmental Disorders, 46(9), 2956–2967. https://doi.org/10.1007/s10803-016-2835-0
  • McCann, H., Cartwright, H., & Halliday, G. M. (2016). Neuropathology of α-synuclein propagation and Braak hypothesis. Movement Disorders, 31(2), 152–160. https://doi.org/10.1002/mds.26421
  • Michel, P. P., Hirsch, E. C., & Hunot, S. (2016). Understanding dopaminergic cell death pathways in Parkinson disease. Neuron, 90(4), 675–691. https://doi.org/10.1016/j.neuron.2016.03.038
  • Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272–277. https://doi.org/10.1093/oxfordjournals.bmb.a070866
  • Modestino, E. J., Amenechi, C., Reinhofer, A., & O'Toole, P. (2017). Side-of-onset of Parkinson's disease in relation to neuropsychological measures. Brain and Behavior, 7(1), e00590. https://doi.org/10.1002/brb3.590
  • Morley, J. F., Xie, S. X., Hurtig, H. I., Stern, M. B., Colcher, A., Horn, S., Dahodwala, N., Duda, J. E., Weintraub, D., Chen-Plotkin, A. S., Van Deerlin, V., Falcone, D., & Siderowf, A. (2012). Genetic influences on cognitive decline in Parkinson's disease. Movement Disorders, 27(4), 512–518. https://doi.org/10.1002/mds.24946
  • Movement Disorder Society Task Force on Rating Scales for Parkinson's, D. (2003). The Unified Parkinson's Disease Rating Scale (UPDRS): Status and recommendations. Movement Disorders, 18(7), 738–750. https://doi.org/10.1002/mds.10473
  • Muslimovic, D., Schmand, B. E. N., Speelman, J. D., & De Haan, R. J. (2007). Course of cognitive decline in Parkinson's disease: A meta-analysis. Journal of the International Neuropsychological Society, 13(6), 920–932. https://doi.org/10.1017/S1355617707071160
  • Myerson, J., Emery, L., White, D. A., & Hale, S. (2003). Effects of age, domain, and processing demands on memory span: Evidence for differential decline. Aging, Neuropsychology, and Cognition, 10(1), 20–27. https://doi.org/10.1076/anec.10.1.20.13454
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Owen, A. M. (2004). Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. The Neuroscientist, 10(6), 525–537. https://doi.org/10.1177/1073858404266776
  • Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. The European Journal of Neuroscience, 11(2), 567–574. https://doi.org/10.1046/j.1460-9568.1999.00449.x
  • Paul, R., Lane, E. M., Tate, D. F., Heaps, J., Romo, D. M., Akbudak, E., Niehoff, J., & Conturo, T. E. (2011). Neuroimaging signatures and cognitive correlates of the Montreal Cognitive Assessment screen in a nonclinical elderly sample. Archives of Clinical Neuropsychology, 26(5), 454–460. https://doi.org/10.1093/arclin/acr017
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
  • Pigott, K., Rick, J., Xie, S. X., Hurtig, H., Chen-Plotkin, A., Duda, J. E., Morley, J. F., Chahine, L. M., Dahodwala, N., Akhtar, R. S., Siderowf, A., Trojanowski, J. Q., & Weintraub, D. (2015). Longitudinal study of normal cognition in Parkinson disease. Neurology, 85(15), 1276–1282. https://doi.org/10.1212/WNL.0000000000002001
  • Pisella, L. (2017). Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex. Annals of Physical and Rehabilitation Medicine, 60(3), 141–147. https://doi.org/10.1016/j.rehab.2016.01.002
  • R Core Team (2018). R: A language and environment for statistical computing (Version 3.5.0). R Foundation for Statistical Computing.
  • Ramos, A. A., & Machado, L. (2021). A comprehensive meta-analysis on short-term and working memory dysfunction in Parkinson's disease. Neuropsychology Review, 31(2), 288–311. https://doi.org/10.1007/s11065-021-09480-w
  • Ramos, A. A., Hamdan, A. C., & Machado, L. (2020). A meta-analysis on verbal working memory in children and adolescents with ADHD. The Clinical Neuropsychologist, 34(5), 873–898. https://doi.org/10.1080/13854046.2019.1604998
  • Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., & Rabbitt, P. M. A. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. Journal of the International Neuropsychological Society, 4(5), 474–490. https://doi.org/10.1017/S1355617798455073
  • RStudio Team (2015). RStudio: Integrated development for R. RStudio, Inc.
  • Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535–543. https://doi.org/10.1037/0894-4105.8.4.535
  • Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews. Neuroscience, 18(7), 435–450. https://doi.org/10.1038/nrn.2017.62
  • Siciliano, M., Trojano, L., Santangelo, G., De Micco, R., Tedeschi, G., & Tessitore, A. (2018). Fatigue in Parkinson's disease: A systematic review and meta-analysis. Movement Disorders, 33(11), 1712–1723. https://doi.org/10.1002/mds.27461
  • Siddi, S., Preti, A., Lara, E., Brébion, G., Vila, R., Iglesias, M., Cuevas-Esteban, J., López-Carrilero, R., Butjosa, A., & Haro, J. M. (2020). Comparison of the touch-screen and traditional versions of the Corsi Block-Tapping Test in patients with psychosis and healthy controls. BMC Psychiatry, 20(1), 329 https://doi.org/10.1186/s12888-020-02716-8
  • Siegert, R. J., Weatherall, M., Taylor, K. D., & Abernethy, D. A. (2008). A meta-analysis of performance on simple span and more complex working memory tasks in Parkinson's disease. Neuropsychology, 22(4), 450–461. https://doi.org/10.1037/0894-4105.22.4.450
  • Smith, C. E., & Cribbie, R. (2021). Factorial ANOVA with unbalanced data: A fresh look at the types of sums of squares. Journal of Data Science, 12(3), 385–403. https://doi.org/10.6339/JDS.201407_12(3).0001
  • Stavitsky, K., Neargarder, S., Bogdanova, Y., McNamara, P., & Golomb, A. C. (2012). The impact of sleep quality on cognitive functioning in Parkinson's disease. Journal of the International Neuropsychological Society, 18(1), 108–117. https://doi.org/10.1017/s1355617711001482
  • Tamura, I., Kikuchi, S., Otsuki, M., Kitagawa, M., & Tashiro, K. (2003). Deficits of working memory during mental calculation in patients with Parkinson's disease. Journal of the Neurological Sciences, 209(1-2), 19–23. https://doi.org/10.1016/S0022-510X(02)00457-4
  • The Math Works (2013). MATLAB and statistics toolbox release R2013b.
  • The Psychological Corporation (1997). WAIS-III and WMS-III technical manual. Psychological Corporation.
  • Tierney, N., Cook, D., McBain, M., & Fay, C. (2021). naniar: Data structures, summaries, and visualisations for missing data (Version 0.6.1.9000). Retrieved from https://github.com/njtierney/naniar
  • Toepper, M., Gebhardt, H., Beblo, T., Thomas, C., Driessen, M., Bischoff, M., Blecker, C. R., Vaitl, D., & Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165(4), 1244–1253. https://doi.org/10.1016/j.neuroscience.2009.11.019
  • Toepper, M., Markowitsch, H. J., Gebhardt, H., Beblo, T., Thomas, C., Gallhofer, B., Driessen, M., & Sammer, G. (2010). Hippocampal involvement in working memory encoding of changing locations: An fMRI study. Brain Research, 1354, 91–99. https://doi.org/10.1016/j.brainres.2010.07.065
  • Trist, B. G., Hare, D. J., & Double, K. L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 18(6), 23. https://doi.org/10.1111/acel.13031
  • Turcano, P., Mielke, M. M., Bower, J. H., Parisi, J. E., Cutsforth-Gregory, J. K., Ahlskog, J. E., & Savica, R. (2018). Levodopa-induced dyskinesia in Parkinson disease: A population-based cohort study. Neurology, 91(24), e2238–e2243. https://doi.org/10.1212/WNL.0000000000006643
  • van Asselen, M., Almeida, I., Andre, R., Januário, C., Gonçalves, A. F., & Castelo-Branco, M. (2009). The role of the basal ganglia in implicit contextual learning: A study of Parkinson's disease. Neuropsychologia, 47(5), 1269–1273. https://doi.org/10.1016/j.neuropsychologia.2009.01.008
  • Vecchi, T., & Cornoldi, C. (1999). Passive storage and active manipulation in visuo-spatial working memory: Further evidence from the study of age differences. European Journal of Cognitive Psychology, 11(3), 391–406. https://doi.org/10.1080/713752324
  • Vogel, S. J., Banks, S. J., Cummings, J. L., & Miller, J. B. (2015). Concordance of the Montreal Cognitive Assessment with standard neuropsychological measures. Alzheimer's & Dementia, 1(3), 289–294. https://doi.org/10.1016/j.dadm.2015.05.002
  • Volle, E., Kinkingnéhun, S., Pochon, J.-B., Mondon, K., Thiebaut de Schotten, M., Seassau, M., Duffau, H., Samson, Y., Dubois, B., & Levy, R. (2008). The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cerebral Cortex, 18(10), 2460–2469. https://doi.org/10.1093/cercor/bhn010
  • Wakabayashi, K., Tanji, K., Mori, F., & Takahashi, H. (2007). The Lewy body in Parkinson's disease: Molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology, 27(5), 494–506. https://doi.org/10.1111/j.1440-1789.2007.00803.x
  • Wang, Z., Jing, J., Igarashi, K., Fan, L., Yang, S., Li, Y., & Jin, Y. (2018). Executive function predicts the visuospatial working memory in autism spectrum disorder and attention-deficit/hyperactivity disorder. Autism Research, 11(8), 1148–1156. https://doi.org/10.1002/aur.1967
  • Waterfall, M. L., & Crowe, S. F. (1995). Meta-analytic comparison of the components of visual cognition in Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 17(5), 759–772. https://doi.org/10.1080/01688639508405165
  • Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G. R., & Lang, A. E. (2010). Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Archives of Neurology, 67(5), 589–595. https://doi.org/10.1001/archneurol.2010.65
  • Weintraub, D., Mamikonyan, E., Papay, K., Shea, J. A., Xie, S. X., & Siderowf, A. (2012). Questionnaire for impulsive-compulsive disorders in Parkinson's Disease-Rating Scale. Movement Disorders, 27(2), 242–247. https://doi.org/10.1002/mds.24023
  • Wen, L., Terrera, G. M., & Seaman, S. R. (2018). Methods for handling longitudinal outcome processes truncated by dropout and death. Biostatistics, 19(4), 407–425. https://doi.org/10.1093/biostatistics/kxx045
  • White, N., Flannery, L., McClintock, A., & Machado, L. (2019). Repeated computerized cognitive testing: Performance shifts and test-retest reliability in healthy older adults. Journal of Clinical and Experimental Neuropsychology, 41(2), 179–191. https://doi.org/10.1080/13803395.2018.1526888
  • White, N., Forsyth, B., Lee, A., & Machado, L. (2018). Repeated computerized cognitive testing: Performance shifts and test-retest reliability in healthy young adults. Psychological Assessment, 30(4), 539–549. https://doi.org/10.1037/pas0000503
  • White, N., Naldoza-Drake, P., Black, K., Scullion, L., & Machado, L. (2020). Can improving the nutritional content of bread enhance cognition? Cognitive outcomes from a randomized controlled trial. Journal of Cognitive Enhancement, 4(2), 167–178. https://doi.org/10.1007/s41465-019-00149-0
  • Yaple, Z. A., Stevens, W. D., & Arsalidou, M. (2019). Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 196, 16–31. https://doi.org/10.1016/j.neuroimage.2019.03.074
  • Zamarian, L., Visani, P., Delazer, M., Seppi, K., Mair, K. J., Diem, A., Poewe, W., & Benke, T. (2006). Parkinson's disease and arithmetics: The role of executive functions. Journal of the Neurological Sciences, 248(1–2), 124–130. https://doi.org/10.1016/j.jns.2006.05.037
  • Zarantonello, L., Schiff, S., Amodio, P., & Bisiacchi, P. (2020). The effect of age, educational level, gender and cognitive reserve on visuospatial working memory performance across adult life span. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 27(2), 302–319. https://doi.org/10.1080/13825585.2019.1608900
  • Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
  • Zokaei, N., McNeill, A., Proukakis, C., Beavan, M., Jarman, P., Korlipara, P., Hughes, D., Mehta, A., Hu, M. T. M., Schapira, A. H. V., & Husain, M. (2014). Visual short-term memory deficits associated with GBA mutation and Parkinson's disease. Brain, 137(Pt 8), 2303–2311. https://doi.org/10.1093/brain/awu143

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.