260
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy

ORCID Icon, , , , ORCID Icon &

References

  • Agrawal, M., & Agrawal, A. K. (2022). Pathophysiological association between diabetes Mellitus and Alzheimer’s Disease. Cureus, 14(9), 29120. https://doi.org/10.7759/cureus.29120
  • Aksu, S., Uslu, A., İşçen P., Tülay, E. E., Barham, H., Soyata, A. Z., Demirtas-Tatlidede, A., Yıldız, G.B., Başar B., Hanağası, H., Woods, A. J., Karamürsel S., & Uyar, F. A. (2022). Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An Event-Related Potentials and Neuropsychological Assessment Study, 1, 3. https://doi.org/10.1007/s10072-022-06020-z
  • Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001
  • Aparício, L. V. M., Guarienti, F., Razza, L. B., Carvalho, A. F., Fregni, F., & Brunoni, A. R. (2016). A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimulation, 9(5), 671–681. https://doi.org/10.1016/J.BRS.2016.05.004
  • Assecondi, S., Hu, R., Eskes, G., Pan, X., Zhou, J., & Shapiro, K. (2021). Impact of tDCS on working memory training is enhanced by strategy instructions in individuals with low working memory capacity. Scientific Reports, 11(1), 1–11. 1 https://doi.org/10.1038/s41598-021-84298-3
  • Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28(9), 1419–1432. https://doi.org/10.1162/jocn_a_00979
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201
  • Bahar-Fuchs, A., Barendse, M. E. A., Bloom, R., Ravona-Springer, R., Heymann, A., Dabush, H., Bar, L., Slater-Barkan, S., Rassovsky, Y., & Schnaider Beeri, M. (2020). Computerized cognitive training for older adults at higher dementia risk due to diabetes: Findings from a randomized controlled trial. The Journals of Gerontology, 75(4), 747–754. https://doi.org/10.1093/GERONA/GLZ073
  • Balderston, N. L., Flook, E., Hsiung, A., Liu, J., Thongarong, A., Stahl, S., Makhoul, W., Sheline, Y., Ernst, M., & Grillon, C. (2020). Patients with anxiety disorders rely on bilateral dlPFC activation during verbal working memory. Social Cognitive and Affective Neuroscience, 15(12), 1288–1298. https://doi.org/10.1093/SCAN/NSAA146
  • Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205. https://doi.org/10.1016/J.CORTEX.2012.05.022
  • Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897. https://doi.org/10.1037//0022-006X.56.6.893
  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. https://doi.org/10.1001/ARCHPSYC.1961.01710120031004
  • Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., & Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychological Medicine, 50(15), 2465–2486. https://doi.org/10.1017/S0033291720003670
  • Bennett, M. I., Smith, B. H., Torrance, N., & Potter, J. (2005). The S-LANSS score for identifying pain of predominantly neuropathic origin: Validation for use in clinical and postal research. The Journal of Pain, 6(3), 149–158. https://doi.org/10.1016/J.JPAIN.2004.11.007
  • Berryhill, M. E. (2017). Longitudinal tDCS: Consistency across working memory training studies. AIMS Neuroscience, 4(2), 71–86. https://doi.org/10.3934/NEUROSCIENCE.2017.2.71
  • Berryhill, M. E., & Martin, D. (2018). Cognitive effects of transcranial direct current stimulation in healthy and clinical populations: An overview. The Journal of ECT, 34(3), e25–e35. https://doi.org/10.1097/YCT.0000000000000534
  • Borella, E., Carretti, B., Riboldi, F., & de Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778. https://doi.org/10.1037/A0020683
  • Borella, E., Carretti, B., Zanoni, G., Zavagnin, M., & de Beni, R. (2013). Working memory training in old age: An examination of transfer and maintenance effects. Archives of Clinical Neuropsychology, 28(4), 331–347. https://doi.org/10.1093/ARCLIN/ACT020
  • Bouhassira, D. (2019). Neuropathic pain: Definition, assessment and epidemiology. Revue Neurologique, 175(1–2), 16–25. https://doi.org/10.1016/J.NEUROL.2018.09.016
  • Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The İnternational Journal of Neuropsychopharmacology, 14(8), 1133–1145. https://doi.org/10.1017/S1461145710001690
  • Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., & Jonides, J. (2014). Neural effects of short-term training on working memory. Cognitive, Affective & Behavioral Neuroscience, 14(1), 147–160. https://doi.org/10.3758/S13415-013-0244-9
  • Buschkuehl, M., Jaeggi, S. M., Hutchison, S., Perrig-Chiello, P., Däpp, C., Müller, M., Breil, F., Hoppeler, H., & Perrig, W. J. (2008). Impact of working memory training on memory performance in old-old adults. Psychology and Aging, 23(4), 743–753. https://doi.org/10.1037/A0014342
  • Caulfield, K. A., & George, M. S. (2022). Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Scientific Reports, 12(1), 1–15. 1 https://doi.org/10.1038/s41598-022-24618-3
  • Caulfield, K. A., Indahlastari, A., Nissim, N. R., Lopez, J. W., Fleischmann, H. H., Woods, A. J., & George, M. S. (2022). Electric field strength from prefrontal transcranial direct current stimulation determines degree of working memory response: A potential application of reverse-calculation modeling? Neuromodulation, 25(4), 578–587. https://doi.org/10.1111/NER.13342
  • Chatterjee, S., Peters, S. A. E., Woodward, M., Mejia Arango, S., Batty, G. D., Beckett, N., Beiser, A., Borenstein, A. R., Crane, P. K., Haan, M., Hassing, L. B., Hayden, K. M., Kiyohara, Y., Larson, E. B., Li, C.-Y., Ninomiya, T., Ohara, T., Peters, R., Russ, T. C., … Huxley, R. R. (2016). Type 2 diabetes as a risk factor for dementia in women compared with men: A pooled analysis of 2.3 Million people comprising more than 100,000 cases of dementia. Diabetes Care, 39(2), 300–307. https://doi.org/10.2337/DC15-1588
  • Cowan, N., Elliott, E. M., Saults, S. J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and ıts role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42–100. https://doi.org/10.1016/J.COGPSYCH.2004.12.001
  • Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M. A. (2016). A systematic review and meta-analysis of the effects of Transcranial Direct Current Stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9(4), 501–517. https://doi.org/10.1016/J.BRS.2016.04.006
  • Delis, D. C., Freeland, J., Kramer, J. H., & Kaplan, E. (1988). Integrating clinical assessment with cognitive neuroscience: Construct validation of the California Verbal Learning Test. Journal of Consulting and Clinical Psychology, 56(1), 123–130. https://doi.org/10.1037/0022-006X.56.1.123
  • Dougherty, M. R., Hamovitz, T., & Tidwell, J. W. (2015). Reevaluating the effectiveness of n-Back training on transfer through the bayesian lens: Support for the Null. Memory & Cognition, 42(3), 464–480. https://doi.org/10.3758/s13423-015-0865-9
  • Draznin, B., Aroda, V., Bakris, G., Benson, G., Brown, F., Freeman, R., Green, J., Huang, E., Isaacs, D., Kahan, S., Leon, J., Lyons, S., Peters, A., Prahalad, P., Reusch, J., & Young-Hyman, D. (2022). Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care, 45(Suppl 1), S17–S38. https://doi.org/10.2337/DC22-S002
  • Farhat, L. C., Carvalho, A. F., Solmi, M., & Brunoni, A. R. (2022). Evidence-based umbrella review of cognitive effects of prefrontal tDCS. Social Cognitive and Affective Neuroscience, 17(1), 43–60. https://doi.org/10.1093/SCAN/NSAA084
  • Farnad, L., Ghasemian-Shirvan, E., Mosayebi-Samani, M., Kuo, M. F., & Nitsche, M. A. (2021). Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimulation, 14(3), 622–634. https://doi.org/10.1016/J.BRS.2021.03.013
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 2007 39:239(2), 175–191. https://doi.org/10.3758/BF03193146
  • Ferreira, G., Silva-Filho, E., de Oliveira, A., de Lucena, C., Lopes, J., & Pegado, R. (2020). Transcranial direct current stimulation improves quality of life and physical fitness in diabetic polyneuropathy: A pilot double blind randomized controlled trial. Journal of Diabetes and Metabolic Disorders, 19(1), 327–335. https://doi.org/10.1007/S40200-020-00513-4
  • Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753. https://doi.org/10.1016/J.TINS.2014.08.003
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6
  • Freyd, M. (1923). The graphic rating scale. Journal of Educational Psychology, 14(2), 83–102. https://doi.org/10.1037/h0074329
  • Garcia, S., Nalven, M., Ault, A., & Eskenazi, M. A. (2020). tDCS as a treatment for anxiety and related cognitive deficits. International Journal of Psychophysiology, 158, 172–177. https://doi.org/10.1016/J.IJPSYCHO.2020.10.006
  • Gomes-Osman, J., Indahlastari, A., Fried, P. J., Cabral, D. L. F., Rice, J., Nissim, N. R., Aksu, S., McLaren, M. E., & Woods, A. J. (2018). Non-invasive brain stimulation: Probing ıntracortical circuits and ımproving cognition in the aging brain. Frontiers in Aging Neuroscience, 10(JUN), 177. https://doi.org/10.3389/FNAGI.2018.00177
  • Gulpers, B. J. A., Verhey, F. R. J., Eussen, S. J. P. M., Schram, M. T., de Galan, B. E., van Boxtel, M. P. J., Stehouwer, C. D. A., & Köhler, S. (2022). Anxiety and cognitive functioning in the Maastricht study: A cross-sectional population study. Journal of Affective Disorders, 319, 570–579. https://doi.org/10.1016/J.JAD.2022.09.072
  • Gylfadottir, S. S., Weeracharoenkul, D., Andersen, S. T., Niruthisard, S., Suwanwalaikorn, S., & Jensen, T. S. (2019). Painful and non‐painful diabetic polyneuropathy: Clinical characteristics and diagnostic issues. Journal of Diabetes İnvestigation, 10(5), 1148–1157. https://doi.org/10.1111/JDI.13105
  • Haatveit, B. C., Sundet, K., Hugdahl, K., Ueland, T., Melle, I., & Andreassen, O. A. (2010). The validity of d prime as a working memory index: Results from the “Bergen n-back task”. Journal of Clinical and Experimental Neuropsychology, 32(8), 871–880. https://doi.org/10.1080/13803391003596421
  • Hawker, G. A., Mian, S., Kendzerska, T., & French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care & Research, 63(S11), S240–S252. https://doi.org/10.1002/acr.20543
  • Huo, L., Zhu, X., Zheng, Z., Ma, J., Ma, Z., Gui, W., & Li, J. (2021). Effects of transcranial direct current stimulation on episodic memory in older adults: A meta-analysis. The Journals of Gerontology, 76(4), 692–702. https://doi.org/10.1093/GERONB/GBZ130
  • Hurley, R., & Machado, L. (2018). Using transcranial direct current stimulation to improve verbal working memory: A detailed review of the methodology. Journal of Clinical and Experimental Neuropsychology, 40(8), 790–804. https://doi.org/10.1080/13803395.2018.1434133
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. https://doi.org/10.1073/PNAS.0801268105/ASSET/8732336B-B4B9-4F33-B51F-ABB26A91049D/ASSETS/GRAPHIC/ZPQ0160803150003.JPEG
  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning – İmplications for training and transfer. Intelligence, 38(6), 625–635. https://doi.org/10.1016/j.intell.2010.09.001
  • Jog, M. v., Wang, D. J. J., & Narr, K. L. (2019). A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. Personalized Medicine in Psychiatry, 17–18, 17. https://doi.org/10.1016/J.PMIP.2019.03.001
  • Jones, K. T., Johnson, E. L., & Berryhill, M. E. (2020). Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 211, 116615. https://doi.org/10.1016/J.NEUROIMAGE.2020.116615
  • Jones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. (2015). Longitudinal neurostimulation in older adults ımproves working memory. PLoS One, 10(4), e0121904. https://doi.org/10.1371/journal.pone.0121904
  • Kane, M. J., Tuholski, S. W., Hambrick, D. Z., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology, 133(2), 189–217. https://doi.org/10.1037/0096-3445.133.2.189
  • Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive control and working memory training in younger and older adults. Psychological Science, 25(11), 2027–2037. https://doi.org/10.1177/0956797614548725
  • Ke, Y., Wang, N., Du, J., Kong, L., Liu, S., Xu, M., An, X., & Ming, D. (2019). The effects of transcranial direct current stimulation (tDCS) on working memory training in healthy young adults. Frontiers in Human Neuroscience, 13, 19. https://doi.org/10.3389/FNHUM.2019.00019/BIBTEX
  • Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The Corsi Block-Tapping Task: Standardization and normative data. Applied Neuropsychology, 7(4), 252–258. https://doi.org/10.1207/S15324826AN0704_8
  • Kim, Y. J., Ku, J., Kim, H. J., Im, D. J., Lee, H. S., Han, K. A., & Kang, Y. J. (2013). Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Annals of Rehabilitation Medicine, 37(6), 766–776. https://doi.org/10.5535/ARM.2013.37.6.766
  • Knotkova, H., Hamani, C., Sivanesan, E., Le Beuffe, M. F. E., Moon, J. Y., Cohen, S. P., & Huntoon, M. A. (2021). Neuromodulation for chronic pain. Lancet, 397(10289), 2111–2124. https://doi.org/10.1016/S0140-6736(21)00794-7
  • Korai, S. A., Ranieri, F., di Lazzaro, V., Papa, M., & Cirillo, G. (2021). Neurobiological after-effects of low ıntensity transcranial electric stimulation of the human nervous system: From basic mechanisms to metaplasticity. Frontiers in Neurology, 12, 587771. https://doi.org/10.3389/FNEUR.2021.587771
  • Krebs, C., Peter, J., Wyss, P., Brem, A. K., & Klöppel, S. (2021). Transcranial electrical stimulation improves cognitive training effects in healthy elderly adults with low cognitive performance. Clinical Neurophysiology, 132(6), 1254–1263. https://doi.org/10.1016/J.CLINPH.2021.01.034
  • Kwon, Y. H., & Jang, S. H. (2012). Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study. Neural Regeneration Research, 7(24), 1889–1894. https://doi.org/10.3969/J.ISSN.1673-5374.2012.24.007
  • Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. https://doi.org/10.1037/A0014343
  • Lindenberg, R., Nachtigall, L., Meinzer, M., Sieg, M. M., & Flöel, A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. Journal of Neuroscience, 33(21), 9176–9183. https://doi.org/10.1523/JNEUROSCI.0055-13.2013
  • Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., & Loo, C. K. (2013). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. The İnternational Journal of Neuropsychopharmacology, 16(9), 1927–1936. https://doi.org/10.1017/S1461145713000539
  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://doi.org/10.1037/A0028228
  • Mograbi, D. C., de Assis Faria, C., Fichman, H. C., Paradela, E. M. P., & Lourenço, R. A. (2014). Relationship between activities of daily living and cognitive ability in a sample of older adults with heterogeneous educational level. Annals of Indian Academy of Neurology, 17(1), 71–76. https://doi.org/10.4103/0972-2327.128558
  • Naros, G., Geyer, M., Koch, S., Mayr, L., Ellinger, T., Grimm, F., & Gharabaghi, A. (2016). Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction? Clinical Neurophysiology, 127(4), 2119–2126. https://doi.org/10.1016/J.CLINPH.2015.12.020
  • Nozari, N., & Thompson-Schill, S. L. (2013). More attention when speaking: Does it help or does it hurt? Neuropsychologia, 51(13), 2770–2780. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2013.08.019
  • Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11(5 Pt 1), 424–446. https://doi.org/10.1006/NIMG.2000.0572
  • Ong, W. Y., Stohler, C. S., & Herr, D. R. (2019). Role of the prefrontal cortex in pain processing. Molecular Neurobiology, 56(2), 1137–1166. https://doi.org/10.1007/S12035-018-1130-9
  • Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A. P., Hofman, A., & Breteler, M. M. B. (1999). Diabetes mellitus and the risk of dementia. Neurology, 53(9), 1937–1942. https://doi.org/10.1212/WNL.53.9.1937
  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/HBM.20131
  • Pacheco-Barrios, K., Cardenas-Rojas, A., Thibaut, A., Costa, B., Ferreira, I., Caumo, W., & Fregni, F. (2020). Methods and strategies of tDCS for the treatment of pain: Current status and future directions. Expert Review of Medical Devices, 17(9), 879–898. https://doi.org/10.1080/17434440.2020.1816168
  • Pang, P. T., & Lu, B. (2004). Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: Role of secreted proteins tPA and BDNF. Ageing Research Reviews, 3(4), 407–430. https://doi.org/10.1016/J.ARR.2004.07.002
  • Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109–119. https://doi.org/10.31887/DCNS.2013.15.1/Dpark
  • Park, S. H., Seo, J. H., Kim, Y. H., & Ko, M. H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport, 25(2), 122–126. https://doi.org/10.1097/WNR.0000000000000080
  • Poole, H. M., Murphy, P., & Nurmikko, T. J. (2009). Development and preliminary validation of the NePIQoL: A quality-of-life measure for neuropathic pain. Journal of Pain and Symptom Management, 37(2), 233–245. https://doi.org/10.1016/J.JPAINSYMMAN.2008.01.012
  • Razza, L. B., de Smet, S., Moffa, A., Sudbrack-Oliveira, P., Vanderhasselt, M. A., & Brunoni, A. R. (2021). Follow-up effects of transcranial direct current stimulation (tDCS) for the major depressive episode: A systematic review and meta-analysis. Psychiatry Research, 302, 114024. https://doi.org/10.1016/J.PSYCHRES.2021.114024
  • Razza, L. B., Palumbo, P., Moffa, A. H., Carvalho, A. F., Solmi, M., Loo, C. K., & Brunoni, A. R. (2020). A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depression and Anxiety, 37(7), 594–608. https://doi.org/10.1002/DA.23004
  • Richmond, L. L., Wolk, D., Chein, J., & Olson, I. R. (2014). Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. Journal of Cognitive Neuroscience, 26(11), 2443–2454. https://doi.org/10.1162/jocn_a_00657
  • Santos, V. S. dos, S. dos, Zortea, M., Alves, R. L., Naziazeno, C. C. dos S., Saldanha, J. S., Carvalho, S. da C. R. de., Leite, A. J. da C., Torres, I. L. da S., Souza, A. de., Calvetti, P. Ü., Fregni, F., & Caumo, W. (2018). Cognitive effects of transcranial direct current stimulation combined with working memory training in fibromyalgia: A randomized clinical trial. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-30127-z
  • Sari, B. A., Tarman, G. Z., Ozdogan, B., Metin, B., & Derakshan, N. & (2020). Working memory training in relation to anxiety, stress, and motivation. Journal of Cognitive Enhancement, 4(4), 446–452. https://doi.org/10.1007/s41465-020-00176-2
  • Sathappan, A. v., Luber, B. M., & Lisanby, S. H. (2019). The Dynamic Duo: Combining noninvasive brain stimulation with cognitive interventions. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 89, 347–360. https://doi.org/10.1016/J.PNPBP.2018.10.006
  • Selvarajah, D., Wilkinson, I. D., Davies, J., Gandhi, R., & Tesfaye, S. (2011). Central nervous system involvement in diabetic neuropathy. Current Diabetes Reports, 11(4), 310–322. https://doi.org/10.1007/S11892-011-0205-Z/FIGURES/6
  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. https://doi.org/10.1037/A0027473
  • Siegle, G. J., Ghinassi, F., & Thase, M. E. (2007). Neurobehavioral therapies in the 21st century: Summary of an emerging field and an extended example of cognitive control training for depression. Cognitive Therapy and Research, 31(2), 235–262. https://doi.org/10.1007/S10608-006-9118-6/FIGURES/6
  • Šimko, P., Pupíková, M., Gajdoš, M., & Rektorová, I. (2021). Cognitive aftereffects of acute tDCS coupled with cognitive training: An fMRI study in healthy seniors. Neural Plasticity, 2021, 6664479. https://doi.org/10.1155/2021/6664479
  • Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & Review, 24(4), 1077–1096. https://doi.org/10.3758/S13423-016-1217-0
  • Stagg, C. J., Antal, A., & Nitsche, M. A. (2018). Physiology of transcranial direct current stimulation. The Journal of ECT, 34(3), 144–152. https://doi.org/10.1097/YCT.0000000000000510
  • Stephens, J. A., & Berryhill, M. E. (2016). Older adults ımprove on everyday tasks after working memory training and neurostimulation. Brain Stimulation, 9(4), 553–559. https://doi.org/10.1016/J.BRS.2016.04.001
  • Teixeira-Santos, A. C., Moreira, C. S., Magalhães, R., Magalhães, C., Pereira, D. R., Leite, J., Carvalho, S., & Sampaio, A. (2019). Reviewing working memory training gains in healthy older adults: A meta-analytic review of transfer for cognitive outcomes. Neuroscience and Biobehavioral Reviews, 103, 163–177. https://doi.org/10.1016/J.NEUBIOREV.2019.05.009
  • Teixeira-Santos, A. C., Moreira, C. S., Pereira, D. R., Pinal, D., Fregni, F., Leite, J., Carvalho, S., & Sampaio, A. (2022). Working memory training coupled with transcranial direct current stimulation in older adults: A randomized controlled experiment. Frontiers in Aging Neuroscience, 14, 827188. https://doi.org/10.3389/FNAGI.2022.827188
  • Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): A Beginner’s guide for design and implementation. Frontiers in Neuroscience, 11, 641. https://doi.org/10.3389/FNINS.2017.00641/BIBTEX
  • Várkonyi, T. T., Petõ, T., Dégi, R., Keresztes, K., Lengyel, C., Janáky, M., Kempler, P., & Lonovics, J. (2002). Impairment of visual evoked potentials: An early central manifestation of diabetic neuropathy? Diabetes Care, 25(9), 1661–1662. https://doi.org/10.2337/DIACARE.25.9.1661
  • Vines, B. W., Cerruti, C., & Schlaug, G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience, 9, 103. https://doi.org/10.1186/1471-2202-9-103
  • Wang, J., Tian, J., Hao, R., Tian, L., & Liu, Q. (2018). Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory. PeerJ, 6(5), e4906. https://doi.org/10.7717/peerj.4906
  • Whitelock, V., Nouwen, A., Houben, K., van den Akker, O., Rosenthal, M., & Higgs, S. (2018). Does working memory training improve dietary self-care in type 2 diabetes mellitus? Results of a double blind randomised controlled trial. Diabetes Research and Clinical Practice, 143, 204–214. https://doi.org/10.1016/J.DIABRES.2018.07.005
  • Wischnewski, M., Mantell, K. E., & Opitz, A. (2021). Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neuroscience and Biobehavioral Reviews, 130, 147–161. https://doi.org/10.1016/J.NEUBIOREV.2021.08.017
  • Wu, Y. J., Tseng, P., Huang, H. W., Hu, J. F., Juan, C. H., Hsu, K.S., & Lin, C. C. (2016). The facilitative effect of transcranial direct current stimulation on visuospatial working memory in patients with diabetic polyneuropathy: A pre-post sham-controlled study. Frontiers in Human Neuroscience, 10(SEP2016), 479. https://doi.org/10.3389/FNHUM.2016.00479/BIBTEX
  • Yu, Y. (2021). Gold standard for diagnosis of DPN. Frontiers in Endocrinology, 12, 719356. https://doi.org/10.3389/FENDO.2021.719356/BIBTEX

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.