30
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Applicability of artificial intelligence in neuropsychological rehabilitation of patients with brain injury

ORCID Icon, &

References

  • Almeida, Y., Sirsat, M., Bermúdez I Badia, S., & Fermé, E., (2020). AI-Rehab: A framework for AI driven neurorehabilitation training – The profiling challenge. Proceedings of the 13th International Joint Conference on Biomedical Engineering System and Technologies (pp. 845–853). https://doi.org/10.5220/0009369108450853
  • Apell, P., & Eriksson, H. (2023). Artificial intelligence (AI) healthcare technology innovations: the current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management, 35(2), 179–193. https://doi.org/10.1080/09537325.2021.1971188
  • Aulisio, M. C., Han, D. Y., & Glueck, A. C. (2020). Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review. Brain Injury, 34(10), 1322–1330. https://doi.org/10.1080/02699052.2020.1802779
  • Bartlett, M. S., Littlewort, G. C., Frank, M. G., & Lee, K. (2014). Automatic decoding of facial movements reveals deceptive pain expressions. Current Biology, 24(7), 738–743. https://doi.org/10.1016/j.cub.2014.02.009
  • Bauer, R. M., Iverson, G. L., Cernich, A. N., Binder, L. M., Ruff, R. M., & Naugle, R. I. (2012). Computerized neuropsychological assessment devices: joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. The Clinical Neuropsychologist, 26(2), 177–196. https://doi.org/10.1080/13854046.2012.663001
  • Bayley, M. T., Janzen, S., Harnett, A., Teasell, R., Patsakos, E., Marshall, S., Bragge, P., Velikonja, D., Kua, A., Douglas, J., Togher, L., Ponsford, J., & McIntyre, A. (2023). INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury: methods, overview, and principles. The Journal of Head Trauma Rehabilitation, 38(1), 7–23. https://doi.org/10.1097/HTR.0000000000000838
  • Beam, A. L., & Kohane, I. S. (2018). Big Data and Machine Learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391
  • Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C., Copelli, M., & Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1(1), 15030. https://doi.org/10.1038/npjschz.2015.30
  • Bostrom, N. (2016). The control problem. Excerpts from superintelligence: Paths, dangers, strategies. In S. Schneider (Ed.), Science fiction and philosophy (pp. 308–330). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118922590.ch23
  • Bruschetta, R., Tartarisco, G., Lucca, L. F., Leto, E., Ursino, M., Tonin, P., Pioggia, G., & Cerasa, A. (2022). Predicting outcome of traumatic brain injury: Is machine learning the best way? Biomedicines, 10(3), 686. https://doi.org/10.3390/biomedicines10030686
  • Bzdok, D., & Ioannidis, J. P. A. (2019). Exploration, inference, and prediction in neuroscience and biomedicine. Trends in Neurosciences, 42(4), 251–262. https://doi.org/10.1016/j.tins.2019.02.001
  • Cenek, M., Hu, M., York, G., & Dahl, S. (2018). Survey of image processing techniques for brain pathology diagnosis: Challenges and opportunities. Frontiers in Robotics and AI, 5, 120. https://doi.org/10.3389/frobt.2018.00120
  • Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., Su, M.-Y., Cha, S., Filippi, C. G., Bota, D., Baldi, P., Poisson, L. M., Jain, R., & Chow, D. (2018). Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. American Journal of Neuroradiology, 39(7), 1201–1207. https://doi.org/10.3174/ajnr.A5667
  • Chen, P.-Y., Su, I.-C., Shih, C.-Y., Liu, Y.-C., Su, Y.-K., Wei, L., Luh, H.-T., Huang, H.-C., Tsai, P.-S., Fan, Y.-C., & Chiu, H.-Y. (2023). Effects of neurofeedback on cognitive function, productive activity, and quality of life in patients with traumatic brain injury: A randomized controlled trial. Neurorehabilitation and Neural Repair, 37(5), 277–287. https://doi.org/10.1177/15459683231170539
  • Chen, Y. W., Lin, K. C., Li, Y. C., & Lin, C. J. (2023). Predicting patient-reported outcome of activities of daily living in stroke rehabilitation: A machine learning study. Journal of Neuroengineering and Rehabilitation, 20(1), 25. https://doi.org/10.1186/s12984-023-01151-6
  • Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., & Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 123, 11–22. https://doi.org/10.1016/j.ijmedinf.2018.12.001
  • Chronopoulos, S. K., Kosma, E. I., Peppas, K. P., Tafiadis, D., Drosos, K., Ziavra, N., & Toki, E. I. (2021). Exploring the speech language therapy through information communication technologies, machine learning and neural networks. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 193–198). IEEE.
  • Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., Felicetti, T., Laatsch, L., Harley, J. P., Bergquist, T., Azulay, J., Cantor, J., & Ashman, T. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92(4), 519–530. https://doi.org/10.1016/j.apmr.2010.11.015
  • Coravos, A., Khozin, S., & Mandl, K. D. (2019). Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digital Medicine, 2(1), 14. https://doi.org/10.1038/s41746-019-0090-4
  • Corrigan, J. D., Selassie, A. W., & Orman, J. A. (. (2010). The epidemiology of traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(2), 72–80. https://doi.org/10.1097/HTR.0b013e3181ccc8b4
  • Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., Rumsey, J. M., Hicks, R., Cameron, J., Chen, D., Chen, W. G., Cohen, L. G., deCharms, C., Duffy, C. J., Eden, G. F., Fetz, E. E., Filart, R., Freund, M., Grant, S. J., … Vinogradov, S. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(Pt 6), 1591–1609. https://doi.org/10.1093/brain/awr039
  • da Silva Cameirão, M., Bermúdez I Badia, S., Duarte, E., & Verschure, P. F. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative Neurology and Neuroscience, 29(5), 287–298. https://doi.org/10.3233/RNN-2011-0599
  • Day, S., Christensen, L. M., Dalto, J., & Haug, P. (2007). Identification of trauma patients at a level 1 trauma center utilizing natural language processing. Journal of Trauma Nursing, 14(2), 79–83. https://doi.org/10.1097/01.JTN.0000278792.20913.82
  • Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y.-C., Punchak, M., Agrawal, A., Adeleye, A. O., Shrime, M. G., Rubiano, A. M., Rosenfeld, J. V., & Park, K. B. (2019). Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery, 130(4), 1080–1097. https://doi.org/10.3171/2017.10.JNS17352
  • Difede, J., Cukor, J., Patt, I., Giosan, C., & Hoffman, H. (2006). The application of virtual reality to the treatment of PTSD following the WTC attack. Annals of the New York Academy of Sciences, 1071(1), 500–501. https://doi.org/10.1196/annals.1364.052
  • Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., Lituiev, D., Copeland, T. P., Aboian, M. S., Mari Aparici, C., Behr, S. C., Flavell, R. R., Huang, S.-Y., Zalocusky, K. A., Nardo, L., Seo, Y., Hawkins, R. A., Hernandez Pampaloni, M., Hadley, D., & Franc, B. L. (2019). A deep learning model to predict a diagnosis of Alzheimer disease by using 18 F-FDG PET of the brain. Radiology, 290(2), 456–464. https://doi.org/10.1148/radiol.2018180958
  • Dodge, H. H., Zhu, J., Mattek, N. C., Bowman, M., Ybarra, O., Wild, K. V., Loewenstein, D. A., & Kaye, J. A. (2015). Web-enabled conversational interactions as a method to improve cognitive functions: Results of a 6-week randomized controlled trial. Alzheimer’s & Dementia, 1(1), 1–12. https://doi.org/10.1016/j.trci.2015.01.001
  • D’Onofrio, G., Sancarlo, D., Panza, F., Copetti, M., Cascavilla, L., Paris, F., Seripa, D., Matera, M. G., Solfrizzi, V., Pellegrini, F., & Pilotto, A. (2012). Neuropsychiatric symptoms and functional status in Alzheimer’s disease and vascular dementia patients. Current Alzheimer Research, 9(6), 759–771. https://doi.org/10.2174/156720512801322582
  • Egbebike, J., Shen, Q., Doyle, K., Der-Nigoghossian, C. A., Panicker, L., Gonzales, I. J., Grobois, L., Carmona, J. C., Vrosgou, A., Kaur, A., Boehme, A., Velazquez, A., Rohaut, B., Roh, D., Agarwal, S., Park, S., Connolly, E. S., & Claassen, J. (2022). Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: A prospective observational cohort study. The Lancet Neurology, 21(8), 704–713. https://doi.org/10.1016/S1474-4422(22)00212-5
  • Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H. F., Siebert, E., Huo, S., Piper, S. K., Sperber, P. S., Liman, T., Endres, M., & Ritter, K. (2023). Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke. Frontiers in Neurology, 14, 1114360. https://doi.org/10.3389/fneur.2023.1114360
  • Fergadiotis, G., Wright, H. H., & West, T. M. (2015). Measuring lexical diversity in narrative discourse of people with aphasia. American Journal of Speech-Language Pathology, 24(4), S868–S880.
  • Fraser, K. C., Meltzer, J. A., & Rudzicz, F. (2015). Linguistic features identify Alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease, 49(2), 407–422. https://doi.org/10.3233/JAD-150520
  • Gandolfi, M., Boscolo Galazzo, I., Gasparin Pavan, R., Cruciani, F., Vale, N., Picelli, A., Storti, S. F., Smania, N., & Menegaz, G. (2022). eXplainable AI allows predicting upper limb rehabilitation outcomes in sub-acute stroke patients. IEEE Journal of Biomedical and Health Informatics, 27(1), 263–273. https://doi.org/10.1109/JBHI.2022.3220179
  • Garcia-Rudolph, A., Garcia-Molina, A., Opisso, E., & Tormos Muñoz, J. (2020). Personalized web-based cognitive rehabilitation treatments for patients with traumatic brain injury: Cluster analysis. JMIR Medical Informatics, 8(10), e16077. https://doi.org/10.2196/16077
  • Goel, P., & Bajaj, M. K. (2022). Role of computerized software, artificial intelligence, and virtual reality in cognitive and neuromotor rehabilitation therapy after brain injury. International Journal of Science and Research (IJSR),
  • Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124–141. https://doi.org/10.1016/j.neubiorev.2013.09.015
  • Gupta, R., Malandrakis, N., Xiao, B., Guha, T., Van Segbroeck, M., Black, M., Potamianos, A., & Narayanan, S. (2014). Multimodal prediction of affective dimensions and depression in human-computer interactions. In Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge (pp. 33–40). https://doi.org/10.1145/2661806.2661810
  • Gurevich, P., Stuke, H., Kastrup, A., Stuke, H., & Hildebrandt, H. (2017). Neuropsychological testing and machine learning distinguish Alzheimer’s disease from other causes for cognitive impairment. Frontiers in Aging Neuroscience, 9, 114. https://doi.org/10.3389/fnagi.2017.00114
  • Hoeksma, S. (2018). Artificial Intelligence techniques to support cognitive rehabilitation [Master’s thesis]. Universitat Politècnica de Catalunya.
  • Hong, Q. N., Fàbregues, S., Bartlett, G., Boardman, F., Cargo, M., Dagenais, P., Gagnon, M.-P., Griffiths, F., Nicolau, B., O’Cathain, A., Rousseau, M.-C., Vedel, I., & Pluye, P. (2018). The mixed methods appraisal tool (mmat) version 2018 for information professionals and researchers. Education for Information, 34(4), 285–291. https://doi.org/10.3233/EFI-180221
  • Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews. Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227
  • Hovy, D., & Spruit, S. L., (2016). The social impact of natural language processing. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 591–598). https://doi.org/10.18653/v1/P16-2096
  • Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 22(5), 341–353. https://doi.org/10.3233/NRE-2007-22502
  • Iaccarino, M. A., Bhatnagar, S., & Zafonte, R. (2015). Rehabilitation after traumatic brain injury. In Handbook of Clinical Neurology (Vol. 127, pp. 411–422). Elsevier. https://doi.org/10.1016/B978-0-444-52892-6.00026-X
  • Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., & Roby-Brami, A. (2014). Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Frontiers in Human Neuroscience, 8, 947. https://doi.org/10.3389/fnhum.2014.00947
  • Jha, S., & Topol, E. J. (2016). Adapting to Artificial Intelligence: Radiologists and pathologists as information specialists. JAMA, 316(22), 2353–2354. https://doi.org/10.1001/jama.2016.17438
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., & Glocker, B. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78. https://doi.org/10.1016/j.media.2016.10.004
  • Kaschel, R., Sala, S. D., Cantagallo, A., Fahlböck, A., Laaksonen, R., & Kazen, M. (2002). Imagery mnemonics for the rehabilitation of memory: A randomised group controlled trial. Neuropsychological Rehabilitation, 12(2), 127–153. https://doi.org/10.1080/09602010143000211
  • Kasula, B. Y. (2024). Advancements in AI-driven healthcare: A comprehensive review of diagnostics, treatment, and patient care integration. International Journal of Machine Learning for Sustainable Development, 1(1), 1–5.
  • Khalili, H., Rismani, M., Nematollahi, M. A., Masoudi, M. S., Asadollahi, A., Taheri, R., Pourmontaseri, H., Valibeygi, A., Roshanzamir, M., Alizadehsani, R., Niakan, A., Andishgar, A., Islam, S. M. S., & Acharya, U. R. (2023). Prognosis prediction in traumatic brain injury patients using machine learning algorithms. Scientific Reports, 13(1), 960. https://doi.org/10.1038/s41598-023-28188-w
  • Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual Review of Psychology, 49(1), 43–64. https://doi.org/10.1146/annurev.psych.49.1.43
  • König, I. R., Ziegler, A., Bluhmki, E., Hacke, W., Bath, P. M. W., Sacco, R. L., Diener, H. C., & Weimar, C. (2008). Predicting long-term outcome after acute ischemic stroke: a simple index works in patients from controlled clinical trials. Stroke, 39(6), 1821–1826. https://doi.org/10.1161/STROKEAHA.107.505867
  • Kreutzer, J. S., Marwitz, J. H., Walker, W., Sander, A., Sherer, M., Bogner, J., Fraser, R., & Bushnik, T. (2003). Moderating factors in return to work and job stability after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18(2), 128–138. https://doi.org/10.1097/00001199-200303000-00004
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Lee, H., Wintermark, M., Gean, A. D., Ghajar, J., Manley, G. T., & Mukherjee, P. (2008). Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. Journal of Neurotrauma, 25(9), 1049–1056. https://doi.org/10.1089/neu.2008.0566
  • Liao, W.-W., Hsieh, Y.-W., Lee, T.-H., Chen, C., & Wu, C. (2022). Machine learning predicts clinically significant health related quality of life improvement after sensorimotor rehabilitation interventions in chronic stroke. Scientific Reports, 12(1), 11235. https://doi.org/10.1038/s41598-022-14986-1
  • Lin, P.-J., Zhai, X., Li, W., Li, T., Cheng, D., Li, C., Pan, Y., & Ji, L. (2022). A transferable deep learning prognosis model for predicting stroke patients’ recovery in different rehabilitation trainings. IEEE Journal of Biomedical and Health Informatics, 26(12), 6003–6011. https://doi.org/10.1109/JBHI.2022.3205436
  • Man, D. W. K., Poon, W. S., & Lam, C. (2013). The effectiveness of artificial intelligent 3-D virtual reality vocational problem-solving training in enhancing employment opportunities for people with traumatic brain injury. Brain Injury, 27(9), 1016–1025. https://doi.org/10.3109/02699052.2013.794969
  • Manoli, R., Chartaux-Danjou, L., Delecroix, H., Daveluy, W., Torre, F., & Moroni, C. (2022). The relationship between cognition and vocational training outcome in patients with acquired brain injury: Contribution of Machine Learning. Applied Neuropsychology. Adult, 29(2), 212–222. https://doi.org/10.1080/23279095.2020.1734809
  • Marcano-Cedeño, A., Chausa, P., García, A., Cáceres, C., Tormos, J. M., & Gómez, E. J. (2013). Data mining applied to the cognitive rehabilitation of patients with acquired brain injury. Expert Systems with Applications, 40(4), 1054–1060. https://doi.org/10.1016/j.eswa.2012.08.034
  • Matsuo, K., Aihara, H., Nakai, T., Morishita, A., Tohma, Y., & Kohmura, E. (2020). Machine learning to predict in-hospital morbidity and mortality after traumatic brain injury. Journal of neurotrauma , 37 (1), 202-210.
  • McDonald, B. C., Flashman, L. A., & Saykin, A. J. (2002). Executive dysfunction following traumatic brain injury: Neural substrates and treatment strategies. NeuroRehabilitation, 17(4), 333–344. https://doi.org/10.3233/NRE-2002-17407
  • Meyers, J. E., Miller, R. M., & Tuita, A. R. R. (2014). Using pattern analysis matching to differentiate TBI and PTSD in a military sample. Applied Neuropsychology Adult, 21(1), 60–68. https://doi.org/10.1080/09084282.2012.737881
  • Moetesum, M., Diaz, M., Masroor, U., Siddiqi, I., & Vessio, G. (2022). A survey of visual and procedural handwriting analysis for neuropsychological assessment. Neural Computing and Applications, 34(12), 9561–9578. https://doi.org/10.1007/s00521-022-07185-6
  • Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). preferred reporting items for systematic review and meta-analysis Protocols (prisma-p) 2015 Statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1
  • Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20(5), e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4
  • Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial intelligence transforms the future of health care. The American Journal of Medicine, 132(7), 795–801. https://doi.org/10.1016/j.amjmed.2019.01.017
  • Oberholzer, M., & Müri, R. M. (2019). Neurorehabilitation of traumatic brain injury (TBI): A clinical review. Medical Sciences, 7(3), 47. https://doi.org/10.3390/medsci7030047
  • Ownsworth, T., & McKenna, K. (2004). Investigation of factors related to employment outcome following traumatic brain injury: A critical review and conceptual model. Disability and Rehabilitation, 26(13), 765–783. https://doi.org/10.1080/09638280410001696700
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: promises and barriers. PLOS Medicine, 13(2), e1001953. https://doi.org/10.1371/journal.pmed.1001953
  • Porritt, K., Gomersall, J., & Lockwood, C. (2014). JBI’s systematic reviews: Study selection and critical appraisal. The American Journal of Nursing, 114(6), 47–52. https://doi.org/10.1097/01.NAJ.0000450430.97383.64
  • Rabinowitz, A. R., & Levin, H. S. (2014). Cognitive sequelae of traumatic brain injury. Psychiatric Clinics, 37(1), 1–11.
  • Raj, R., Luostarinen, T., Pursiainen, E., Posti, J. P., Takala, R. S. K., Bendel, S., Konttila, T., & Korja, M. (2019). Machine learning-based dynamic mortality prediction after traumatic brain injury. Scientific Reports, 9(1), 17672. https://doi.org/10.1038/s41598-019-53889-6
  • Ramírez, J. G. C. (2024). AI in healthcare: Revolutionizing patient care with predictive analytics and decision support systems. Journal of Artificial Intelligence General Science, 1(1), 31–37. https://doi.org/10.60087/jaigs.v1i1.p37
  • Roark, B., Mitchell, M., Hosom, J. P., Hollingshead, K., & Kaye, J. (2011). Spoken language derived measures for detecting mild cognitive impairment. IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 2081–2090. https://doi.org/10.1109/TASL.2011.2112351
  • Roozenbeek, B., Lingsma, H. F., Lecky, F. E., Lu, J., Weir, J., Butcher, I., McHugh, G. S., Murray, G. D., Perel, P., Maas, A. I., & Steyerberg, E. W. (2012). Prediction of outcome after moderate and severe traumatic brain injury: External validation of the IMPACT and CRASH prognostic models. Critical Care Medicine, 40(5), 1609–1617. https://doi.org/10.1097/CCM.0b013e31824519ce
  • Russell, S., & Norvig, P. (1995). A modern, agent-oriented approach to introductory artificial intelligence. ACM SIGART Bulletin, 6(2), 24–26. https://doi.org/10.1145/201977.201989
  • Sato, K., Niimi, Y., Mano, T., Iwata, A., & Iwatsubo, T. (2022). Automated evaluation of conventional clock-drawing test using deep neural network: Potential as a mass screening tool to detect individuals with cognitive decline. Frontiers in Neurology, 13, 896403. https://doi.org/10.3389/fneur.2022.896403
  • Say, I., Chen, Y. E., Sun, M. Z., Li, J. J., & Lu, D. C. (2022). Machine learning predicts improvement of functional outcomes in traumatic brain injury patients after inpatient rehabilitation. Frontiers in Rehabilitation Sciences, 3, 1005168. https://doi.org/10.3389/fresc.2022.1005168
  • Schnell-Inderst, P., Conrads-Frank, A., Stojkov, I., Krenn, C., Kofler, L. M., & Siebert, U. (2023). Occupational therapy for persons with cognitive impairments. GMS German Medical Science, 21, Doc02.
  • Schultebraucks, K., Yadav, V., & Galatzer-Levy, I. R. (2021). Utilization of machine learning-based computer vision and voice analysis to derive digital biomarkers of cognitive functioning in trauma survivors. Digital Biomarkers, 5(1), 16–23. https://doi.org/10.1159/000512394
  • Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 125. https://doi.org/10.1186/s12911-021-01488-9
  • Shaheen, M. Y. (2021). Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Preprints.
  • Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49(9), 1426–1448. https://doi.org/10.1017/S0033291719000151
  • Silver, J. M., McAllister, T. W., & Arciniegas, D. B. (2009). Depression and cognitive complaints following mild traumatic brain injury. The American Journal of Psychiatry, 166(6), 653–661. https://doi.org/10.1176/appi.ajp.2009.08111676
  • Solana, J., Cáceres, C., García-Molina, A., Chausa, P., Opisso, E., Roig-Rovira, T., Menasalvas, E., Tormos-Muñoz, J. M., & Gómez, E. J. (2014). Intelligent therapy assistant (ITA) for cognitive rehabilitation in patients with acquired brain injury. BMC Medical Informatics and Decision Making, 14(1), 58. https://doi.org/10.1186/1472-6947-14-58
  • Soo, C., & Tate, R. L. (2007). Psychological treatment for anxiety in people with traumatic brain injury. The Cochrane Database of Systematic Reviews, 3, CD005239. https://doi.org/10.1002/14651858.CD005239.pub2
  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460. https://doi.org/10.1017/S1355617702813248
  • Steyaert, S., Qiu, Y. L., Zheng, Y., Mukherjee, P., Vogel, H., & Gevaert, O. (2023). Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. Communications Medicine, 3(1), 44. https://doi.org/10.1038/s43856-023-00276-y
  • Tang, H., Zhao, Y., Yang, J., & Ding, X. (2019). Predicting long-term outcomes after traumatic brain injury with deep learning. Scientific Reports, 9(1), 1–12.
  • Tomas, C. W., Fitzgerald, J. M., Bergner, C., Hillard, C. J., Larson, C. L., & deRoon-Cassini, T. A. (2022). Machine learning prediction of posttraumatic stress disorder trajectories following traumatic injury: Identification and validation in two independent samples. Journal of Traumatic Stress, 35(6), 1656–1671. https://doi.org/10.1002/jts.22868
  • Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
  • Tsanas, A., Little, M. A., McSharry, P. E., Spielman, J., & Ramig, L. O. (2012). Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 59(5), 1264–1271. https://doi.org/10.1109/TBME.2012.2183367
  • Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine & Biology, 60(14), 5471.
  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
  • Wang, S., Chen, W., Liu, Q., & Xiao, X. (2018). Prediction of Alzheimer’s disease using deep learning algorithm based on magnetic resonance imaging. Journal of Health & Medical Informatics, 9(1), 1–9.
  • Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS One, 12(4), e0174944. https://doi.org/10.1371/journal.pone.0174944
  • Whyte, J., Hart, T., Vaccaro, M., Grieb-Neff, P., Risser, A., Polansky, M., & Coslett, H. B. (2004). Effects of methylphenidate on attention deficits after traumatic brain injury: A multidimensional, randomized, controlled trial. American Journal of Physical Medicine & Rehabilitation, 83(6), 401–420. https://doi.org/10.1097/01.PHM.0000128789.75375.D3
  • Wilson, B. A. (2008). Neuropsychological rehabilitation. Annual Review of Clinical Psychology, 4(1), 141–162. https://doi.org/10.1146/annurev.clinpsy.4.022007.141212
  • Yuh, E. L., Cooper, S. R., Mukherjee, P., Yue, J. K., Lingsma, H. F., Gordon, W. A., Valadka, A. B., Okonkwo, D. O., Schnyer, D. M., Vassar, M. J., Maas, A. I. R., Manley, G. T., Casey, S. S., Cheong, M., Dams-O’Connor, K., Hricik, A. J., Inoue, T., Menon, D. K., … Sinha, T. K. (2014). Diffusion Tensor imaging for outcome prediction in mild traumatic brain injury: A TRACK-TBI study. Journal of Neurotrauma, 31(17), 1457–1477. https://doi.org/10.1089/neu.2013.3171
  • Zihni, E., Madai, V. I., Livne, M., Galinovic, I., Khalil, A. A., Fiebach, J. B., & Frey, D. (2020). Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLOS One, 15(4), e0231166. https://doi.org/10.1371/journal.pone.0231166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.