6,454
Views
45
CrossRef citations to date
0
Altmetric
Research articles

Gene drive to reduce malaria transmission in sub-Saharan Africa

, ORCID Icon, , &
Pages S66-S80 | Received 20 May 2016, Accepted 17 Dec 2017, Published online: 24 Jan 2018

References

  • Adelman, Z. N. ed. 2016. Genetic Control of Malaria and Dengue. London: Academic Press.
  • Akbari, O. S., C.-H. Chen, J. M. Marshall, H. Huang, I. Antoshechkin, and B. A. Hay. 2014. “Novel Synthetic Medea Selfish Genetic Elements Drive Population Replacement in Drosophila; A Theoretical Exploration of Medea – Dependent Population Suppression.” ACS Synthetic Biology 3 (12): 915–928. doi:10.1021/sb300079h.
  • Akbari, O. S., K. D. Matzen, J. M. Marshall, H. Huang, C. M. Ward, and B. A. Hay. 2013. “A Synthetic Gene Drive System for Local, Reversible Modification and Suppression of Insect Populations.” Current Biology 23 (8): 671–677. doi:10.1016/j.cub.2013.02.059.
  • Alonso, P. L., G. Brown, M. Arevalo-Herrera, F. Binka, C. Chitnis, F. Collins, O. K. Doumbo, et al. 2011. “A Research Agenda to Underpin Malaria Eradication.” PLoS Medicine 8 (1): e1000406. doi:10.1371/journal.pmed.1000406.
  • Alphey, L., M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service, and S. L. Dobson. 2010. “Sterile-insect Methods for Control of Mosquito-borne Diseases: An Analysis.” Vector-Borne and Zoonotic Diseases 10 (3): 295–311. doi:10.1089/vbz.2009.0014.
  • Bayoh, M. N., D. K. Mathias, M. R. Odiere, F. M. Mutuku, L. Kamau, J. E. Gimnig, J. M. Vulule, W. A. Hawley, M. J. Hamel, and E. D. Walker. 2010. “Anopheles gambiae: Historical Population Decline Associated with Regional Distribution of Insecticide-treated Bed Nets in Western Nyanza Province, Kenya.” Malaria Journal 9. doi:10.1186/1475-2875-9-62.
  • Beaghton, A., P. J. Beaghton, and A. Burt. 2016. “Gene Drive Through a Landscape: Reaction-Diffusion Models of Population Suppression and Elimination by a Sex Ratio Distorter.” Theoretical Population Biology 108: 51–69. doi:10.1016/j.tpb.2015.11.005.
  • Beaghton, A., A. Hammond, T. Nolan, A. Crisanti, H. C. J. Godfray, and A. Burt. 2017. “Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing.” Genetics 205 (4): 1587–1596. doi:10.1534/genetics.116.197632.
  • Burt, A. 2003. “Site-specific Selfish Genes as Tools for the Control and Genetic Engineering of Natural Populations.” Proceedings of the Royal Society B: Biological Sciences 270 (1518): 921–928. doi:10.1098/rspb.2002.2319.
  • Burt, A. 2014. “Heritable Strategies for Controlling Insect Vectors of Disease.” Philosophical Transactions of the Royal Society B-Biological Sciences 369 (1645). doi:10.1098/rstb.2013.0432.
  • Burt, A., and R. Trivers. 2006. Genes in Conflict: The Biology of Selfish Genetic Elements. Cambridge: Belknap Press of Harvard University Press.
  • Catteruccia, F., J. P. Benton, and A. Crisanti. 2005. “An Anopheles Transgenic Sexing Strain for Vector Control.” Nature Biotechnology 23 (11): 1414–1417. doi:10.1038/nbt1152.
  • Champer, J., R. Reeves, S. Y. Oh, C. Liu, J. X. Liu, A. G. Clark, and P. W. Messer. 2017. “Novel CRISPR/Cas9 Gene Drive Constructs Reveal Insights into Mechanisms of Resistance Allele Formation and Drive Efficiency in Genetically Diverse Population.” PLoS Genetics 13 (7). doi:10.1371/journal.pgen.1006796.
  • Chan, Y.-S., D. S. Huen, R. Glauert, E. Whiteway, and S. Russell. 2013. “Optimising Homing Endonuclease Gene Drive Performance in a Semi-refractory Species: The Drosophila melanogaster Experience.” Plos One 8 (1). doi:10.1371/journal.pone.0054130.
  • Chan, Y.-S., D. A. Naujoks, D. S. Huen, and S. Russell. 2011. “Insect Population Control by Homing Endonuclease-based Gene Drive: An Evaluation in Drosophila melanogaster.” Genetics 188 (1): 33–44. doi:10.1534/genetics.111.127506.
  • Chen, C. H., H. X. Huang, C. M. Ward, J. T. Su, L. V. Schaeffer, M. Guo, and B. A. Hay. 2007. “A Synthetic Maternal-effect Selfish Genetic Element Drives Population Replacement in Drosophila.” Science 316 (5824): 597–600. doi: 10.1126/science.1138595
  • David, A. S., J. M. Kaser, A. C. Morey, A. M. Roth, and D. A. Andow. 2013. “Release of Genetically Engineered Insects: A Framework to Identify Potential Ecological Effects.” Ecology and Evolution 3 (11): 4000–4015. doi:10.1002/ece3.737.
  • Deredec, A., A. Burt, and H. C. J. Godfray. 2008. “The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management.” Genetics 179 (4): 2013–2026. doi:10.1534/genetics.108.089037.
  • Deredec, A., H. C. J. Godfray, and A. Burt. 2011. “Requirements for Effective Malaria Control with Homing Endonuclease Genes.” Proceedings of the National Academy of Sciences 108 (43): E874–E880. doi:10.1073/pnas.1110717108.
  • Dujon, B. 1989. “Group I Introns as Mobile Genetic Elements — Facts and Mechanistic Speculations — A Review.” Gene 82: 91–114. doi: 10.1016/0378-1119(89)90034-6
  • Eckhoff, P. A., E. A. Wenger, H. C. J. Godfray, and A. Burt. 2017. Impact of Mosquito Gene Drive on Malaria Elimination in a Computational Model with Explicit Spatial and Temporal Dynamics.” Proceedings of the National Academy of Sciences 114 (2): E255–E264. doi:10.1073/pnas.1611064114.
  • EFSA. 2013. “Guidance on the Environmental Risk Assessment of Genetically Modified Animals.” EFSA Journal 11 (5): 3200. doi:10.2903/j.efsa.3200 doi: 10.2903/j.efsa.2013.3200
  • Esvelt, K. M., A. L. Smidler, F. Catteruccia, and G. M. Church. 2014. “Concerning RNA-guided Gene Drives for the Alteration of Wild Populations.” Elife 3, doi:10.7554/eLife.03401.
  • Galizi, R., L. A. Doyle, M. Menichelli, F. Bernardini, A. Deredec, A. Burt, B. L. Stoddard, N. Windbichler, and A. Crisanti. 2014. “A Synthetic Sex Ratio Distortion System for the Control of the Human Malaria Mosquito.” Nature Communications 5. doi:10.1038/ncomms4977.
  • Gantz, V. M., and E. Bier. 2015. “The Mutagenic Chain Reaction: A Method for Converting Heterozygous to Homozygous Mutations.” Science 348 (6233): 442–444. doi:10.1126/science.aaa5945.
  • Gantz, V. M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias, E. Bier, and A. A. James. 2015. “Highly Efficient Cas9-mediated Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles stephensi.” Proceedings of the National Academy of Sciences 112 (49): E6736–3E43. doi:10.1073/pnas.1521077112.
  • Godfray, H. C. J., A. North, and A. Burt. 2017. "How Driving Endonuclease Genes can be Used to Combat Pests and Disease Vectors.” BMC Biology 15. doi:10.1186/s12915-017-0420-4.
  • Griffin, J. T., S. Bhatt, M. E. Sinka, P. W. Gething, M. Lynch, E. Patouillard, E. Shutes, et al. 2016. “Potential for Reduction of Burden and Local Elimination of Malaria by Reducing Plasmodium falciparum Malaria Transmission: A Mathematical Modelling Study.” The Lancet Infectious Diseases 16 (4): 465–472. doi:10.1016/s1473-3099(15)00423-5.
  • Hammond, A., R. Galizi, K. Kyrou, A. Simoni, C. Siniscalchi, D. Katsanos, M. Gribble, et al. 2016. “A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito Vector Anopheles gambiae.” Nature Biotechnology 34 (1): 78–83. doi:10.1038/nbt.3439.
  • Hammond, A. M., K. Kyrou, M. Bruttini, A. North, R. Galizi, X. Karlsson, N. Kranjc, F. M. Carpi, R. D'Aurizio, and A. Crisanti. 2017. “The Creation and Selection of Mutations Resistant to a Gene Drive over Multiple Generations in the Malaria Mosquito.” PLoS Genetics 13 (10). doi:10.1371/journal.pgen.1007039.
  • Krzywinska, E., N. J. Dennison, G. J. Lycett, and J. Krzywinski. 2016. “A Maleness Gene in the Malaria Mosquito Anopheles gambiae.” Science 353 (6294): 67–69. doi:10.1126/science.aaf5605.
  • Marshall, J. M., and O. S. Akbari. 2016. “Gene Drive Strategies for Population Replacement.” In Genetic Control of Malaria and Dengue, edited by Z.N. Adelman, 169–200. London: Academic Press.
  • Marshall, J. M., A. Buchman, H. M. Sánchez, and O. S. Akbari. 2017. “Overcoming Evolved Resistance to Population-Suppressing Homing-Based Gene Drives.” Scientific Reports 7 (3776). doi:10.1038/s41598-017-02744-7.
  • NASEM (National Academies of Sciences, Engineering and Medicine). 2016. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington, DC: The National Academies Press.
  • Newton, M. E., R. J. Wood, and D. I. Southern. 1976. “A Cytogenetic Analysis of Meiotic Drive in the Mosquito, Aedes aegypti (L.).” Genetica 46 (3): 297–318. doi: 10.1007/BF00055473
  • North, A., A. Burt, and H. C. J. Godfray. 2013. “Modelling the Spatial Spread of a Homing Endonuclease Gene in a Mosquito Population.” Journal of Applied Ecology 50 (5): 1216–1225. doi:10.1111/1365-2664.12133.
  • Papathanos, P. A., N. Windbichler, M. Menichelli, A. Burt, and A. Crisanti. 2009. “The Vasa Regulatory Region Mediates Germline Expression and Maternal Transmission of Proteins in the Malaria Mosquito Anopheles gambiae: A Versatile Tool for Genetic Control Strategies.” BMC Molecular Biology, 10–65. doi:10.1186/1471-2199-10-65.
  • Russell, T. L., N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur, and G. F. Killeen. 2011. “Increased Proportions of Outdoor Feeding among Residual Malaria Vector Populations Following Increased Use of Insecticide-treated Nets in Rural Tanzania.” Malaria Journal 10. doi:10.1186/1475-2875-10-80.
  • Simoni, A., C. Siniscalchi, Y.-S. Chan, D. S. Huen, S. Russell, N. Windbichler, and A. Crisanti. 2014. “Development of Synthetic Selfish Elements Based on Modular Nucleases in Drosophila melanogaster.” Nucleic Acids Research 42 (11): 7461–7472. doi:10.1093/nar/gku387.
  • Smith, D. L., and F. E. McKenzie. 2004. “Statics and Dynamics of Malaria Infection in Anopheles Mosquitoes.” Malaria Journal 3. doi:10.1186/1475-2875-3-13.
  • Sreenivasamurthy, S. K., G. Dey, M. Ramu, M. Kumar, M. K. Gupta, A. K. Mohanty, H. C. Harsha, et al. 2013. “A Compendium of Molecules Involved in Vector-pathogen Interactions Pertaining to Malaria.” Malaria Journal 12. doi:216 10.1186/1475-2875-12-216.
  • Tatem, A. J., P. W. Gething, D. L. Smith, and S. I. Hay. 2013. “Urbanization and the Global Malaria Recession.” Malaria Journal 12. doi:10.1186/1475-2875-12-133.
  • van Driesche, R., M. Hoddle, and T. Center. 2008. Control of Pests and Weeds by Natural Enemies: An Introduction to Biological Control. Wiley-Backwell.
  • Vella, M. R., C. E. Gunning, A. L. Lloyd, and F. Gould. 2017. “Evaluating Strategies for Reversing CRISPR-Cas9 Gene Drives.” Scientific Reports 7 (11038). doi:10.1038/s41598-017-10633-2.
  • Wang, S., and M. Jacobs-Lorena. 2013. “Genetic Approaches to Interfere with Malaria Transmission by Vector Mosquitoes.” Trends in Biotechnology 31: 185–193. doi: 10.1016/j.tibtech.2013.01.001
  • WHO. 2010. “Progress and Prospects for the Use of Genetically Modified Mosquitoes to Inhibit Disease Transmission.” Geneva: FNIH/WHO/TDR.
  • WHO. 2015. “World Malaria Report 2015.” Geneva: WHO.
  • WHO. 2016. “Global Technical Strategy for Malaria 2016-2030.” Geneva.
  • Windbichler, N., M. Menichelli, P. A. Papathanos, S. B. Thyme, H. Li, U. Y. Ulge, B. T. Hovde, et al. 2011. “A Synthetic Homing Endonuclease-based Gene Drive System in the Human Malaria Mosquito.” Nature 473 (7346): 212–215. doi:10.1038/nature09937.
  • Wu, B., L. Luo, and X. J. Gao. 2016. “Cas9-triggered Chain Ablation of CAS9 as a Gene Drive Brake.” Nature Biotechnology 34 (2): 137–138. doi:10.1038/nbt.3444.
  • Zeddies, J., R. P. Schaab, P. Neuenschwander, and H. R. Herren. 2001. “Economics of Biological Control of Cassava Mealybug in Africa.” Agricultural Economics 24 (2): 209–219. doi: 10.1111/j.1574-0862.2001.tb00024.x