79
Views
0
CrossRef citations to date
0
Altmetric
Deep Learning for Unmanned Vehicle Systems

Deployment of wind turbine in between cement silos for small power generation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 160-173 | Received 09 Jun 2021, Accepted 19 Dec 2021, Published online: 08 Mar 2022

References

  • Ahmed, S. D., Al-Ismail, F. S. M., Shafiullah, M., Al-Sulaiman, F. A., & El-Amin, I. M. (2020). Grid integration challenges of wind energy: A review. IEEE Access, 8, 10857–10878. https://doi.org/10.1109/ACCESS.2020.2964896
  • Ahyan, D. (2015). A technical review of building-mounted wind power systems and a sample simulation model. Renewable and Sustainable Energy Reviews, 16(1), 1040–1049. https://doi.org/10.1016/j.rser.2011.09.028
  • Akwa, J. V., Vielmo, H. A., & Petry, A. P. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16(5), 3054–3064. https://doi.org/10.1016/j.rser.2012.02.056
  • Alisan, J. (2015). Chinese code GB50009-2012Load code for the design of building structures (pp. 1–261). China Architecture and Building Press.
  • Bobrova, D. (2015). Building-integrated wind turbines in the aspect of architectural shaping. Procedia Engineering, 117(1), 404–410. https://doi.org/10.1016/j.proeng.2015.08.185
  • Carcangiu, S., & Montisci, A. (2012). A building integrated eolic system for the exploitation of wind energy in urban areas. 2nd IEEE energycon Conference and Exhibition, (Advances in Energy Conversion Symposium), 9–12 September, Florence, Italy. https://doi.org/10.1109/EnergyCon.2012.6347746
  • Choi, N. J., Nam, S. H., Jeong, J. H., & Kim, K. C. (2013). Numerical study on the horizontal axis turbines arrangement in a wind farm: Effect of separation distance on the turbine aerodynamic power output. Journal of Wind Engineering and Industrial Aerodynamics, 117, 11–17. https://doi.org/10.1016/j.jweia.2013.04.005
  • De Araujo, J. M. S. (2015 March 13). WRF wind speed simulation and SAM wind energy estimation: A case study in Dili Timor Leste. In Special section on Advanced Energy Storage Technologies and Their Applications (Vol. 7, pp. 35382–35393). IEEE. https://doi.org/10.1109/ACCESS.2019.2904755
  • Haase, M., & Löfström, E. (2015). Building augmented wind turbines – BAWT. Integrated solution and technologies of small wind turbines. SINTEF, 10–17.
  • Heo, Y. G. (2015). CFD study on the aerodynamic performance output of 110 kW building augmented wind turbine. Energy and Buildings, 129, 162–173. https://doi.org/10.1016/j.enbuild.2016.08.004
  • Irabu, K., & Roy, J. N. (2007). Characteristics of wind power on Savonius rotor using a guide-box tunnel. Experimental Thermal and Fluid Science, 32(2), 580–586. https://doi.org/10.1016/j.expthermflusci.2007.06.008
  • Jimmy, G., McDonald, A., & Carroll, J. (2020). Energy yield and operations and maintenance costs of parallel wind turbine powertrains. IEEE Transactions on Sustainable Energy, 11(2), 674–681. https://doi.org/10.1109/TSTE.2019.2902517
  • Lee, J.-H., & Lee, Y.-T. (2016). Effect of helical angle on the performance of Savonius wind turbine. Renewable Energy, 89, 231–244. https://doi.org/10.1016/j.renene.2015.12.012
  • Li, Q. S., Chen, F. B., & Li, Y. G. (2013). Implementing wind turbines in a tall building for power generation: A study of wind loads and wind speed amplifications. Journal of Wind Engineering and Industrial Aerodynamics, 116, 70–78. https://doi.org/10.1016/j.jweia.2013.03.004
  • Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Asef, M. H. N. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003
  • Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained: Theory, design and application (2nd ed.). Wiley.
  • Marco, T. (2011). CFD analysis of a Savonius rotor in a confined test section and in open field. ASME 2011 Turbo Expo: Power for Land, Sea and Air, 5(3), 799–809. https://doi.org/10.1115/GT2011-45877
  • Nimje, A. A., & Gandhi, N. M. (2019). Design and development of small wind turbine for power generation through high velocity exhaust air. Renewable Energy, 145, 1487–1493. https://doi.org/10.1016/j.renene.2019.06.065
  • Pali, B. S., & Vadhera, S. (2020). An innovative continuous power generation system comprising of wind energy along with pumped hydro storage and open well. IEEE Transaction on Sustainable Energy, 11(1), 145–153. https://doi.org/10.1109/TSTE.2018.2886705
  • Park, J., & Jung, H.-J. (2015). A new building-integrated wind turbine system utilizing the building. Energies, 8(10), 11846–11187. https://doi.org/10.3390/en81011846
  • Putri, R., Adhisuwignjo, S., & Rifa’I, M. (2018, November 13-14). Design of simple power converter for small scale wind turbine system for battery charger. Third International Conference on Information System and Electrical Engineering (ICITISEE), Yogiyakarta, Indonesia. https://doi.org/10.1109/ICITISEE.2018.8721018
  • Sagol, E., Reggio, M., & Ilinca, A. (2012). Assessment of two-equation turbulence models and validation of the performance characteristics of an experimental wind turbine by CFD. ISRN Mechanical Engineering, https://doi.org/10.5402/2012/428671
  • Salameh, Z., & Nandu, C. V. (2010, July 25-29). Overview of building integrated wind energy concersion systems. IEEE PES General Meeting, Minneapolis, MN, USA. https://doi.org/10.1109/PES.2010.5590054
  • Sivasegaram, S. (1986). Power augmentation in wind rotors: A review. Wind Engineering, 10(3), 163–179.
  • Ushiyama, I., & Nagai, H. (1988). Optimum design configuration and performance of Savonius rotors. Wind Engineering, 12(1), 59–75.
  • Wenehenubuna, F., & Saputraa, A. (2015). An experimental study on the performance of Savonius wind turbines related with the number of blades. Energy Procedia, 68, 297–304. https://doi.org/10.1016/j.egypro.2015.03.259
  • Yahya, W., Ziming, K., Juan, W., SaqlainQurashi, M., Al Nehari, M., & Salim, E. (2021). Influence of tilt angle and the number of guide vane blades towards the Savonius rotor performance. Energy Reports, 7(3), 3317–3327. https://doi.org/10.1016/j.egyr.2021.05.053
  • Yilmaz, H., Cam, O., Tangoz, S., & Yilmaz, I. (2017). Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames. International Journal of Hydrogen Energy, 42(40), 25744–25755. https://doi.org/10.1016/j.ijhydene.2017.04.080
  • Zhu, H., & Li, C. (2018). Investigation on aerodynamic characteristics of building augmented vertical axis wind turbine. Journal of Renewable and Sustainable Energy, 10, 5. https://doi.org/10.1063/1.5028198

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.