78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nonlinear optimal control of a multi-rotor wind power unit with PMSGs and AC/DC converters)

, , , &
Received 10 Oct 2022, Accepted 02 Jul 2023, Published online: 06 Aug 2023

References

  • Armghan, H., Yang, M., Armghan, A., & Ali, N. (2021). Double integral action-based sliding-mode controller design for the back-to-back converters in grid-connected hybrid wind-PV system. International Journal of Electric Power and Energy System, 127, 106655–106670. https://doi.org/10.1016/j.ijepes.2020.106655
  • Basseville, M., & Nikiforov, I. (1993). Detection of abrupt changes: theory and applications. Prentice-Hall.
  • Benbouhenni, H., Bouradja, E., Gazmi, H., Bizon, N., & Colak, I. (2022). A new PD (I+PI) direct power controller for the variable-speed multi-rotor wind-power system driven doubly-fed asynchronous generator. Energy Reports, 8, 15594–15594. https://doi.org/10.1016/j.egyr.2022.11.136
  • Bernal-Perez, S., Ano-Vallalba, S., Blasco-Gimenez, R., & J. Rodriguez-D' Derlée (2013). Efficiency and fault ride-through performance of a diode-rectifier and VSC-inverter-based HVDC-link for offshore wind farms. IEEE Transactions on Industrial Electronics, 60(6), 24011–2409. https://doi.org/10.1109/TIE.2012.2222855
  • Calle-Prado, A., Alepuz, S., Bordonau, J., Cortes, P., & Rodriguez, J. (2016). Predictive control of a back-to-back MPC converter-based wind power system. IEEE Transactions on Industrial Electronics, 63(7), 4615–4627. https://doi.org/10.1109/TIE.2016.2529564
  • Cardiel-Alvarez, M. A., Amolte, S., Rodriguez-Amenedo, J. L., & Nomi, A. (2018). Decentralized control of offshore wind farms connected to diode-based HVDC links. IEEE Transactions on Energy Conversion, 33(3), 1233–1241. https://doi.org/10.1109/TEC.60
  • Chatouani, E., Errani, Y., Obbadi, A., Sahnoun, S., & Wadama, B. (2020). Nonlinear backstepping with integral action for wind power plants based on doubly-fed induction generator connected to the nonideal grid. Technology and Economics of Smart Grids and Sustainable Energy, 7(4), 1–15. https://doi.org/10.1007/s40866-022-001.
  • Chen, P., Wu, C., Ma, J., & Blaabjerg, F. (2020). Coordinated derived current control of DFIG's RSC and GSC without PLL under unbalanced grid voltage conditions. IEEE Access, 8, 64760–64769. https://doi.org/10.1109/Access.6287639
  • Egea-Alverez, A., Bianchi, F., Junyent-Ferré, A., Gross, G., & Gomis-Beellmunt, O. (2013). Voltage control of multi-terminal VSC-HVDC transmission systems for offshore wind power plants: Design and implementation in a scaled platform. IEEE Transactions on Industrial Electronics, 60(6), 2381–2392. https://doi.org/10.1109/TIE.2012.2230597
  • El-Beshbichi, O., Xing, Y., & Ong, M. C. (2021). Dynamic analysis of two-rotor wind turbine on spar-type floating platform. Ocean Engineering, 236, 109441–109456. https://doi.org/10.1016/j.oceaneng.2021.109441
  • El-Beshbichi, O., Xing, Y., & Ong, M. C. (2022). Comparative dynamic analysis of two-rotor wind-turbine on spar-type semi-submersible and tension-log floating platform. Ocean Engineering, 266, 112926–112939. https://doi.org/10.1016/j.oceaneng.2022.112926
  • El Mourabit, Y., Derouich, A., Batchnaif, J., El Ouanjli, N., Zazzoum, O., Mezioui, K, & Badre, B. (2019). Implementation and validation of backstepping control for PMSG wind turbine using dSPACE controller board. Energy Reports, 5, 807–821. https://doi.org/10.1016/j.egyr.2019.06.015
  • Elobeid, M., Tao, L., Ingram, D., Pillai, A. C., Mayorga, P., & Hanssen, J. E. (2022). Hydrodynamic performance of an innovative semisubmersible platform with twin wind turbines. In ASME 2022 41st international conference on ocean, offshore and arctic engineering. ASME.
  • Errami, Y., Obhadi, A., & Suhnoon, S. (2021). Dynamic performance analysis of grid-connected PMSG based on nonlinear control. International Journal of Ambient Energy, 43, 4675–4682. https://doi.org/10.1080/01430750.2021.1919551
  • Filsoof, O. T., Hansen, M. H., Yde, A., Battcher, P., & Zhang, X. (2021). A novel methodology for analyzing modal dynamics of multi-rotor wind turbines. Journal of Sound and Vibration, 498, 115810. https://doi.org/10.1016/j.jsv.2020.115810
  • Gibbs, B. P. (2011). Advanced Kalman filtering, least squares and modelling: a practical handbook. John Wiley.
  • Gouenoune, I., Plestan, F., & Chermitti, A. (2017). Yaw rotation control for a new tin wind turbines structure based on a super-twisting strategy. In IEEE CCTA 2017, IEEE 2017 conference on control technology and applications. IEEE.
  • Gouenoune, L., Plestan, F., Chermitti, A., & Evangelista, C. (2017). Modeling and robust control of a twin wind turbines structure. Control Engineering Practice, 69, 23–35. https://doi.org/10.1016/j.conengprac.2017.08.009
  • Guenoune, I., Plestan, F., & Chermitti, A. (2017). MPPT and yaw control contribution of a new twin wind turbines structure. In Proceedings 20th IFAC world congress. IFAC.
  • Guo, Y., Gao, H., Wu, Q., Zhou, H., Ostergaard, J., & Shahidehpour, M. (2018). Connected offshore wind farms based on model predictive control. IEEE Transactions on Sustainable Energy, 9(1), 474–487. https://doi.org/10.1109/TSTE.2017.2743005
  • Hu, J., Xu, H., & He, Y. (2013). Coordinated control of DFIG's RSC and GSC under generalized unbalanced and distorted grid voltage conditions. IEEE Transactions on Industrial Electronics, 60(7), 2808–2819. https://doi.org/10.1109/TIE.2012.2217718
  • Huang, C., Li, F., & Jin, Z. (2015). Maximum power point tracking strategy for large-scale wind generation systems considering wind-turbine dynamics. IEEE Transactions on Industrial Electronics, 62(4), 2530–2539. https://doi.org/10.1109/TIE.41
  • Huang, K., Xiang, W., Xu, L., & Wang, Y. (2020). Hybrid AC/DC hub for integrating offshore wind power and interconnecting onshore and offshore DC networks. IET Renewable Power Generation, 14(10), 1738–1745. https://doi.org/10.1049/rpg2.v14.10
  • Jiang, Y., Liu, S., Zao, P., Yu, Y., Zou, L., Liu, L., & Li, J. (2022). Experimental evaluation of a tree-shaped quad-rotor wind-turbine on power output controllability and survival shutdown. Applied Energy, 309, 118350–118359. https://doi.org/10.1016/j.apenergy.2021.118350
  • Kunjumuhammed, L. P., Pal, B. C., Gupta, F., & Dyke, K. J. (2017). Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC. IEEE Transactions on Energy Conversion, 32(9), 1166–1176. https://doi.org/10.1109/TEC.60
  • Li, R., Yu, L., & Adam, G. P. (2019). Coordinated control of parallel DR-HVDC and MMC-HVDC systems for offshore wind energy transmission. IEEE Emerging and Selected Topics on Power Electronics, 8(3), 2572–2582. https://doi.org/10.1109/JESTPE.6245517
  • Mahon, E. M., & Leithead, W. E. (2019). Performance comparison of optimized and non-optimized yaw control for a multi-rotor system. In IEEE 2018 conference on control technology and applications. IEEE.
  • Makni, M., Haidar, I., Barbot, J. P., Pleastan, F., Feki, N., & Abbas, M. S. (2021). Active fault tolerant control for twin wind turbines subject to asymmetric fault. In IEEE ICCAD 2021, IEEE 2021 International conference on control, automation and diagnosis. IEEE.
  • Makni, M., Haidar, I., Barbot, J. P., & Plestan, F. (2023). Active fault-tolerant control based on sparse recovery diagnosis: the twin wind turbines case. International Journal of Robust and Nonlinear Control. https://doi.org/10.1002/rnc.6484
  • Makni, M., Haiden, I., Barbot, J. P., Plestan, F., Feki, N., & Abbes, M. S. (2020). Analysis and control of twin wind turbine subject to asymmetric fault. In IEEE CCTA 2020, IEEE 2020 conference on control technology and applications. IEEE.
  • Nguyen, T. H., & Lee, D. C. (2013). Advanced fault ride-through technique for PMSG wind turbine systems using line-side converter as STATCOM. IEEE Transactions on Industrial Electronics, 60(7), 2842–2850. https://doi.org/10.1109/TIE.2012.2229673
  • Nie, Z., Shi, L., Zhou, Y., & Ni, Y. (2019). Low-frequency oscillation analysis of AC/DC system with offshore wind farm integration via MMC-based HVDC. IET Journal of Engineering, 2019(16), 1450–1456. https://doi.org/10.1049/joe.2018.8534.
  • Oshman, A. M., & Alsakhuny, F. (2022). Sliding-mode control for grid integration of wind power system based on direct drive PMSG. IEEE Access, 10, 26567–26579. https://doi.org/10.1109/ACCESS.2022.3157311
  • Patel, K. S., & Manwana, V. H. (2022). Modifier grid-side converter control technique for DFIG connected to nonlinear loads. Energy Sources – Part a: Recovery, Utilization and Environmental Effects, 8(2), 1–14.https://doi.org/10.1109/JESTPE.2019.2901747.
  • Plestan, F., Evangelista, C., Puleston, P., & Gouenoune, I. (2018). Control of a twin ind turbines system without wind velocity information. In IEEE VSS 2018, IEEE 2018 15th international workshop on variable structure systems. IEEE.
  • Prince, M. K. K., Arif, M. T., Gorgoom, A., Oo, T. A., & Haue, E. (2021). Modeling, parameter measurement and control of PMSG-based grid-connected wind energy conversion system. Journal of Modern Power Systems and Clean Energy, 9(5), 1054–1065. https://doi.org/10.35833/MPCE.2020.000601
  • Rao Palepogu, K., & Mahapatra, S. (2023). Pitch orientation control of twin-rotor MIMO system using sliding-mode controller amd state-varying gains. Journal of Control and Decision, 1–11. https://doi.org/10.1080/23307706.2023.2165977
  • Rigatos, G. (2015). Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems. Springer.
  • Rigatos, G. (2016). Intelligent renewable energy systems: modelling and control. Springer.
  • Rigatos, G., & Busawon, K. (2018). Robotic manipulators and vehicles: control, estimation and filtering. Springer.
  • Rigatos, G., & Karapanou, E. (2020). Advances in applied nonlinear optimal control. Cambridge Scholars Publishing.
  • Rigatos, G., Siano, P., & Cecati, C. (2015). A new nonlinear H-infinity feedback control approach for three-phase voltage source converters. Electric Power Components and Systems, 46(3), 302–312. https://doi.org/10.1080/15325008.2015.1092056
  • Rigatos, G., & Zhang, Q. (2009). Fuzzy model validation using the local statistical approach. Fuzzy Sets and Systems, 60(7), 882–904. https://doi.org/10.1016/j.fss.2008.07.008
  • Rigatos, G. G. (2011). Modelling and control for intelligent industrial systems: adaptive algorithms in robotics and industrial engineering. Springer.
  • Rigatos, G. G., & Tzafestas, S. G. (2007). Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Mathematical and Computer Modelling of Dynamical Systems, 13, 251–266. https://doi.org/10.1080/01443610500212468
  • Swami Naidu, N. K., & Singh, B. (2015). Doubly-fed induction generator for wind energy conversion systems with integrated active filter capabilities. IEEE Transactions on Industrial Informatics, 11(4), 923–933. https://doi.org/10.1109/TII.2015.2446767
  • Tahoumi, E., Evangelista, C., Plestan, F., Ghanes, M., Barbot, J. P., & Pouleston, P. (2020). Energy efficient control derived from homogeneous algorithm: application to a wind system. Control Engineering Practice, 103, 104586. https://doi.org/10.1016/j.conengprac.2020.104586
  • Teixeira-Pinto, R., Bauer, P., Rodrigues, S. F., Wiggelinkhuizer, E. J., Picrik, J., & Ferreira, B. (2013). A novel distributed direct-voltage control strategy for grid integration of offshore wind energy systems through MTDC network. IEEE Transactions on Industrial Electronics, 60(6), 2429–2441. https://doi.org/10.1109/TIE.2012.2216239
  • Thakor, D., & Jiang, J. (2018). Control of a PMSG wind-turbine under asymmetrical voltage sags using sliding-mode approach. IEEE Power and Energy Technology Systems Journal, 5(2), 47–55. https://doi.org/10.1109/PETSJ.6687318
  • Toussaint, G. J., Basar, T., & Bullo, F. (2000). H∞ optimal tracking control techniques for nonlinear underactuated systems. In Proceedings IEEE CDC 2000, 39th IEEE conference on decision and control. IEEE.
  • Vijaya Kumar, S. C., Karunasithi, K., Raja, S. P., & Ramesh, S. (2023). Modeling of electric vehicle charging station and controlled by fuzzy logic controllers with different modes of operation. Journal of Control and Decision, 10(1), 26–39. https://doi.org/10.1080/23307706.2022.2074901
  • Watanabe, K., & Ohya, J. (2019). Multirotor systems using three shrouded wind turbines for power output increase. ASME Journal of Energy Resources Technology, 141, 051211. https://doi.org/10.1115/1.4042971
  • Xu, H., Zhang, Y., Li, Z., Zhao, R., & Hu, J (2020). Reactive current constraints and coordinated control of DFIG's RSC and GSC during asymmetric grid condition. IEEE Access, 8, 184339–184449. https://doi.org/10.1109/Access.6287639
  • Yaramasu, V., Wu, B., Alepuz, S., & Kouro, S. (2014). Predictive control of a low voltage ride-through enhancement of three-level-boost and NPC converter-based PMSG wind turbine. IEEE Transactions on Industrial Electronics, 61(12), 6832–6841. https://doi.org/10.1109/TIE.2014.2314060
  • You, R., Yuan, X., & Li, X. (2022). A multi-rotor medium voltage wind turbine system and its control strategy. Renewable Energy, 186, 366–3777. https://doi.org/10.1016/j.renene.2022.01.010
  • You, R., Yuan, X., & Li, X. (2022). A multi-rotor medium voltage wind-turbine system and its control strategy. Renewable Energy, 186, 366–377. https://doi.org/10.1016/j.renene.2022.01.010
  • Zhang, C., & Plestan, F. (2021). Adaptive sliding-mode control of floating offshore wind turbine equiped by permanent magnet synchronous generator. Wind Energy, 24, 754–769. https://doi.org/10.1002/we.v24.7
  • Zhang, J. Z., Sun, T., Wang, F., Rodriguez, J., & Kennel, R. (2016). A computationally efficient quasi-centraized DMPC for back-to-back converter PMSG wind turbine systems without DC-link tracking errors. IEEE Transactions on Industrial Electronics, 63(10), 6160–6171. https://doi.org/10.1109/TIE.2016.2573768
  • Zhang, S., Tseng, K. J., Vilathgamuwa, D. M., Nguyen, T. D., & Wang, X. Y. (2011). Design of a robust grid interface system for PMSG-based wind turbine generators. IEEE Transactions on Industrial Electronics, 58(1), 316–328. https://doi.org/10.1109/TIE.2010.2044737
  • Zhang, Y., Sun, Q., Zhou, J., Wang, R., Guerrero, J. M., & Lashah, A. (2023). ADP-based intelligent frequency control via adaptive virtual inertia emulation. Journal of Control and Decision, 10(3), 423–432. https://doi.org/10.1080/23307706.2022.2090455
  • Zhang, Z., Fang, H., Gao, G., Rodriguez, T., & Kennel, R. (2017). Multiple-vector model predictive power control for grid-tied wind turbine system with enhanced steady-state control performance. IEEE Transactions on Industrial Electronics, 64(8), 6287–6298. https://doi.org/10.1109/TIE.2017.2682000
  • Zhang, Z, Tang, Y., & Xu, Z. (2021). Medium frequency diode rectifier unit based HVDC transmission for offshore wind farm integration. IET Renewable Power Generation, 15, 717–730. https://doi.org/10.1049/rpg2.v15.4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.