89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Finite-time control for systems subject to multiple disturbances

, , , &
Received 09 Dec 2022, Accepted 02 Jul 2023, Published online: 30 Jul 2023

References

  • Amato, F., Ariola, M., & Dorato, P. (2001). Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 37(9), 1459–1463. https://doi.org/10.1016/S0005-1098(01)00087-5
  • Chen, W. H. (2004). Disturbance observer based control for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 9(4), 706–710. https://doi.org/10.1109/TMECH.2004.839034
  • Ding, S. H., Chen, W. H., & Mei, K. (2020). Disturbance observer design for nonlinear systems represented by input output models. IEEE Transactions on Industrial Electronics, 67(2), 1222–1232. https://doi.org/10.1109/TIE.41
  • Ding, S. H., & Li, S. H. (2009). Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerospace Science and Technology, 13(4-5), 256–265. https://doi.org/10.1016/j.ast.2009.05.001
  • Guo, L., & Chen, W. H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via dobc approach. International Journal of Robust and Nonlinear Control, 15(3), 109–125. https://doi.org/10.1002/(ISSN)1099-1239
  • Guo, L., & Wen, X. Y. (2011). Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems. Transactions of the Institute of Measurement and Control, 33(8), 942–956. https://doi.org/10.1177/0142331210361555
  • Guo, Y., Yao, Y., Wang, S., Ma, K., Liu, K., & Guo, J. (2014). Input–output finite-time stabilization of linear systems with finite-time boundedness. ISA Transactions, 53(4), 977–982. https://doi.org/10.1016/j.isatra.2014.05.018
  • Hu, L. Y., Liu, X. P., & Wang, H. Q. (2021). Decentralised connectively finite-time control for a class of p-normal from nonlinear large-scale systems with expanding construction and its application. International Journal of Control, 94(6), 1588–1610. https://doi.org/10.1080/00207179.2019.1662092
  • Jin, E. D., & Sun, Z. W. (2008). Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 12(4), 324–330. https://doi.org/10.1016/j.ast.2007.08.001
  • Kang, J., Guo, G., & Yang, G. H. (2023). Distributed optimization of uncertain multiagent systems with disturbances and actuator faults via exosystem observer-based output regulation. IEEE Transactions on Circuits and System I-Regular Papers, 70(2), 897–909. https://doi.org/10.1109/TCSI.2022.3221097
  • Kussaba, H., Borges, R. A., & Ishihara, J. Y. (2015). A new condition for finite time boundedness analysis. Journal of the Franklin Institute, 352(12), 5514–5528. https://doi.org/10.1016/j.jfranklin.2015.09.005
  • Lan, Q., Li, S., & Yang, J. (2020). Finite-time tracking control for a class of nonlinear systems with multiple mismatched disturbances. International Journal of Robust and Nonlinear Control, 30(10), 4095–4111. https://doi.org/10.1002/rnc.v30.10
  • Lee, H., & Tomizuka, M. (2000). Robust adaptive control using a universal approximator for siso nonlinear systems. Fuzzy Sets and Systems, 8(1), 95–106. https://doi.org/10.1016/S0165-0114(01)00051-3
  • Li, S. H., Du, H. B., & Lin, X. Z. (2011). Finite-time consensus algorithm for multi-agent systems with double integrator dynamics. Automatica, 47(8), 1706–1712. https://doi.org/10.1016/j.automatica.2011.02.045
  • Li, S. H., Yang, J., Chen, W. H., & Chen, X. S. (2014). Disturbance observer based control: Methods and applications. CRC Press.
  • Liu, H., & Zhao, X. (2014). Finite-time H∞ control of switched systems with mode-dependent average dwell time. Journal of the Franklin Institute, 351(3), 1301–1315. https://doi.org/10.1016/j.jfranklin.2013.10.020
  • Liu, T. F., & Jiang, Z. P. (2020). Measurement feedback control of nonlinear systems: A small-gain approach. Journal of Control and Decision, 7(1), 64–89. https://doi.org/10.1080/23307706.2019.1689857
  • Liu, Y., Li, H. Y., Lu, R. Q., Zuo, Z. Y., & Li, X. D. (2022). An overview of finite/fixed-time control and its application in engineering systems. IEEE-CAA Journal of Automatic Sinica, 9(12), 2106–2120. https://doi.org/10.1109/JAS.2022.105413
  • Liu, Y. L., Wang, H., & Guo, L. (2013). Composite robust h∞ control for uncertain stochastic nonlinear systems with state delay via a disturbance observer. IEEE Transactions on Automatic Control, 63(12), 4345–4352. https://doi.org/10.1109/TAC.2018.2819683
  • Lu, X. D., Zhang, X. F., & Sun, L.-Y. (2017). Finite-time h∞ control for nonlinear discrete Hamiltonian descriptor systems. Journal of the Franklin Institute, 354(14), 6138–6151. https://doi.org/10.1016/j.jfranklin.2017.07.013
  • Ma, J. L., Park, J. H., Xu, S. Y., Cui, G. Z., & Yang, Z. C. (2020). Command-filter-based adaptive tracking control for nonlinear systems with unknown input quantization and mismatching disturbances. Applied Mathematics and Computation, 377, 125161–125174. https://doi.org/10.1016/j.amc.2020.125161
  • Polyakov, A., Efimov, D., & Perruquetti, W. (2015). Robust stabilization of mimo systems in finite/fixed time. International Journal of Robust Nonlinear Control, 26(1), 69–90. https://doi.org/10.1002/rnc.v26.1
  • Pukdeboon, C. (2015). Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking. Journal of Systems Engineering and Electronics, 26(4), 826–839. https://doi.org/10.1109/JSEE.2015.00090
  • Sun, H. B., & Guo, L. (2014). Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances. Journal of the Franklin Institute, 351(2), 1027–1041. https://doi.org/10.1016/j.jfranklin.2013.10.002
  • Sun, H. B., Li, Y. K., Zong, G. D., & Hou, L. L. (2018). Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities. Automatica, 89(39), 349–357. https://doi.org/10.1016/j.automatica.2017.12.046
  • Wei, X. J., & Chen, N. (2014a). Composite hierarchical anti-disturbance control for nonlinear systems with DOBC and fuzzy control. International Journal of Robust and Nonlinear Control, 20(1), 106–118. https://doi.org/10.1002/rnc.1425
  • Wei, X. J., & Chen, N. (2014b). Composite hierarchical anti-disturbance control for nonlinear systems with DOBC and fuzzy control. International Journal of Robust and Nonlinear Control, 24(2), 362–373. https://doi.org/10.1002/rnc.2891
  • Wei, X. J., & Wu, Z. J. (2016). Disturbance observer-based disturbance attenuation control for a class of stochastic systems. Automatica, 63(162), 21–25. https://doi.org/10.1016/j.automatica.2015.10.019
  • Wo, S., & Han, X. (2019). Finite-time robust decentralized control for uncertain singular large-scale systems with exogenous disturbances. IMA Journal of Mathematical Control and Information, 36(4), 1133–1148. https://doi.org/10.1093/imamci/dny022
  • Wu, D., Zhang, W., Du, H., & Wang, X. (2021). Robust adaptive finite-time trajectory tracking control of a quadrotor aircraft. International Journal of Robust and Nonlinear Control, 31(16), 8030–8054. https://doi.org/10.1002/rnc.v31.16
  • Xi, C., & Dong, J. (2020). Adaptive exact sliding tracking control of high-order strict-feedback systems with mismatched nonlinearities and external disturbances. International Journal of Robust and Nonlinear Control, 30(18), 8228–8243. https://doi.org/10.1002/rnc.v30.18
  • Yang, J., Chen, W. H., & Li, S. H. (2011). Nonlinear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory and Applications, 5(18), 2053–2062. https://doi.org/10.1049/iet-cta.2010.0616
  • You, L. H., Wei, X. J., & Han, J. (2020). Elegant anti-disturbance control for stochastic systems with multiple heterogeneous disturbances based on fuzzy logic systems. Transactions of the Institute of Measurement and Control, 42(14), 2611–2621. https://doi.org/10.1177/0142331220922732
  • Zhang, H. F., Jing, Y. W., & Wei, X. J. (2015). Composite anti-disturbance control for a class of uncertain nonlinear systems via a disturbance observer. Transactions of the Institute of Measurement and Control, 38(6), 1–9. https://doi.org/10.1177/0142331215616181
  • Zhang, H. F., Wei, X. J., & Han, J. (2018). Anti-disturbance control based on disturbance observer for nonlinear systems with bounded disturbances. Journal of the Franklin Institute, 355(12), 4916–4930. https://doi.org/10.1016/j.jfranklin.2018.05.018
  • Zhang, S. Q., Che, W. W., & Deng, C. (2022). Observer-based event-triggered control for linear MASs under a directed graph and DoS attacks. Journal of Control and Decision, 9(3), 384–396. https://doi.org/10.1080/23307706.2021.2001385
  • Zhang, X., & Feng, G. (2011). Global finite-time stabilisation of a class of feedforward non-linear systems. IET Control Theory and Applications, 5(12), 1450–1457. https://doi.org/10.1049/iet-cta.2010.0362
  • Zhang, X. Y., Li, C. D., & Li, H. F. (2022a). Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay. Journal of the Franklin Institute, 359(3), 1196–1214. https://doi.org/10.1016/j.jfranklin.2021.11.013
  • Zhang, X. Y., Li, C. D., & Li, H. F. (2022b). Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay. Journal of the Franklin Institute, 359(3), 6138–6151. https://doi.org/10.1016/j.jfranklin.2021.11.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.