312
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Instruction transmission of combat robotic arm based on neck muscles surface electromyography signals

, , , , &

References

  • Al-ada, M., Höglund, T., Khamis, M., Urbani, J., & Nakajima, T. (2019). Orochi: Investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs. In Ah2019: Proceedings of the 10th Augmented Human International Conference 2019, New York, NY, USA, March (pp. 1–9), Article 37.
  • Amoruso, E., Dowdall, L., Kollamkulam, M. T., Ukaegbu, O., Kieliba, P., Ng, T., Dempseyjones, H., Clode, D., & Makin, T. R. (2022). Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts. Journal of Neural Engineering, 19(1), Article 016006. https://doi.org/10.1088/1741-2552/ac47d9
  • Aronson, R. M., & Admoni, H. (2019). Semantic gaze labeling for human-robot shared manipulation. In The 11th ACM Symposium, June (pp. 1–9), Article no. 2.
  • Bright, Z., & Asada, H. H. (2017). Supernumerary robotic limbs for human augmentation in overhead assembly tasks. In Robotics: Science and Systems (pp. 1–10).
  • Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544. https://doi.org/10.1109/TSP.2013.2288675
  • Fukuoka, M., Verhulst, A., Nakamura, F., Takizawa, R., Masai, K., & Sugimoto, M. (2019). Facedrive: Facial expression driven operation to control virtual supernumerary robotic arms. In International Conference on Computer Graphics and Interactive Techniques, New York, NY, USA (pp. 9–10).
  • Gopinath, D., & Weinberg, G. (2016). A generative physical model approach for enhancing the stroke palette for robotic drummers. Robotics and Autonomous Systems, 86, 207–215. https://doi.org/10.1016/j.robot.2016.08.020
  • He, Y. T., Eguren, D., Azorin, J. M., Grossman, R. G., Luu, T. P., & Contreras-Vidal, J. L. (2018). Brain-machine interfaces for controlling lower-limb powered robotic systems. Journal of Neural Engineering, 15(2), 1–15.
  • Jia, M., Yang, Z. L., Chen, Y. M., & Wen, Y. L. (2018). Neck muscles fatigue evaluation of subway phubber based on sEMG signals. In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China (pp. 141–144).
  • Kieliba, P., Clode, D., Maimon-Mor, R., & Makin, T. (2021). Robotic hand augmentation drives changes in neural body representation. Science Robotics, 6(54), 1–13. https://doi.org/10.1126/scirobotics.abd7935
  • Kieliba, P., Clode, D., Maimon-Mor, R. O., & Makin, T. R. (2020). Neurocognitive consequences of hand augmentation. Cold Spring Harbor Laboratory.
  • Koochaki, F., & Najafizadeh, L. (2018). Predicting intention through Eye gaze patterns. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA (pp. 1–4).
  • Kushwah, K., Narvey, R., & Singhal, A. (2018). Head posture analysis using sEMG signal. In 2018 International Conference on Advanced Computation and Telecommunication (ICACAT), Bhopal, India (pp. 1–5).
  • Llorens-Bonilla, B., Parietti, F., & Asada, H. H. (2012). Demonstration-based control of supernumerary robotic limbs. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, October 7–12 (pp. 3936–3942).
  • Maekawa, A., Takahashi, S., Saraiji, M. Y., Wakisaka, S., Iwata, H., & Inami, M. (2019). Naviarm: Augmenting the learning of motor skills using a backpack-type robotic arm system. In The 10th Augmented Human International Conference 2019, march (pp. 1–8).
  • Nabeshima, J., Saraiji, M. Y., & Minamizawa, K. (2019). Arque: Artificial biomimicry-inspired tail for extending innate body functions. In ACM SIGGRAPH 2019 posters (SIGGRAPH ‘19), New York, NY, USA (pp. 1–2), Article 52.
  • Nguyen, P. H., Imran Mohd, I. B., Sparks, C., Arellano, F. L., Zhang, W., & Polygerinos, P. (2019). Fabric soft poly-limbs for physical assistance of daily living tasks. In 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada (pp. 8429–8435).
  • Parietti, F., & Asada, H. H. (2014). Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing. In 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China (pp. 1176–1183).
  • Parietti, F., Chan, K. C., Hunter, B., & Asada, H. H. (2015). Design and control of supernumerary robotic limbs for balance augmentation. In 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (pp. 5010–5017).
  • Penaloza, C., Hernandez-Carmona, D., & Nishio, S. (2018). Towards intelligent brain-controlled body augmentation robotic limbs. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan (pp. 1011–1015).
  • Sasaki, T., Saraiji, M. Y., Fernando, C. L., Minamizawa, K., & Inami, M. (2017). Metalimbs: Multiple arms interaction metamorphism. In Siggraph ‘17: ACM SIGGRAPH 2017 Emerging Technologies, July (pp. 1–2), Article 16.
  • Sasaki, T., Saraiji, M. Y., Minamizawa, K., & Inami, M. (2018). Metaarms: Body remapping using feet-controlled artificial arms. In Adjunct Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, October (pp. 140–142).
  • Seo, W., Shin, C. Y., Choi, J., Hong, D., & Han, C. S. (2016). Applications of supernumerary robotic limbs to construction works: Case studies. In ISARC 2016 - 33rd International Symposium on Automation and Robotics in Construction (pp. 1041–1047).
  • Tomoya, S., Saraiji, M. Y., Fernando, C. L., Minamizawa, K., & Inami, M. (2017). Metalimbs: Metamorphosis for multiple arms interaction using artificial limbs. In ACM SIGGRAPH 2017 Posters, July 30–August 03.
  • Veronneau, C., Denis, J., Lebel, L. P., Denninger, M., & Plante, J. S. (2020). Multifunctional remotely actuated 3-DOF supernumerary robotic Arm based on magnetorheological clutches and hydrostatic transmission lines. IEEE Robotics and Automation Letters, 5(2), 2546–2553. https://doi.org/10.1109/LRA.2020.2967327
  • Xu, C. L., Lin, K., Yang, C., Wu, C. H., & Gao, X. R. (2016). Cooperative intelligent robot control method using leg surface EMG signals. Chinese Journal of Biomedical Engineering, 35(4), 385–393.
  • Yang, X., Li, Y., Guo, L., Sui, X. Y., Ng, P. P.-T., & Kwan, B. W.-F. (2018). A comparative study of AGS and Non-AGS backpacks on relieving fatigue of neck and back muscles. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan (pp. 2370–2375).
  • Zhang, B. K., Liu, H., Zheng, W. X., Ji, H., Zhang, J. H., Li, T., & Zhang, Q. J. (2022). Development of robot chess-playing system based on voice control. Scientific and Technological Innovation, 25, 159–162.
  • Zhang, Y. Z., Zheng, S. J., & Pan, L. (2020). Writing robot system with four degree of freedom trajectory planning based on speech control. Journal of Computer Applications, 40(S01), 284–288.
  • Zhu, M. X., Huang, Z., Wang, X. C., Zhuang, J. S., Zhang, H. S., Wang, X., Yang, Z. J., Lu, L., Shang, P., Zhao, G. R., Chen, S. X., & Li, G. L. (2019). Contraction patterns of facial and neck muscles in speaking tasks using high-density electromyography. In 2019 13th International Conference on Sensing Technology (ICST), Sydney, NSW, Australia (pp. 1–5).
  • Zhu, M. X., Lu, L., Yang, Z. J., Wang, X., Liu, Z. Z., Wei, W. H., Chen, F., Li, P., Chen, S. X., & Li, G. L. (2018). Contraction patterns of neck muscles during phonating by high-density surface electromyography. In 2018 IEEE International Conference on Cyborg and Bionic systems (CBS), Shenzhen, China (pp. 572–575).
  • Zhu, M. X., Yang, W. Z., Samuel, O. W., Xiang, Y., Huang, J. P., Zou, H. Q., & Li, G. L. (2016). A preliminary evaluation of myoelectrical energy distribution of the front neck muscles in pharyngeal phase during normal swallowing. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA (pp. 1700–1703).
  • Zhu, P. L., Su, Z. X., Tang, J. X., Wu, Y. X., Yu, S. J., & Tang, H. Y. (2022). Lower limb exoskeleton control system based on shoulder muscle surface electromyogram. Beijing Biomedical Engineering, 41(5), 510–515.