588
Views
26
CrossRef citations to date
0
Altmetric
Reviews

A Review of the Application of Otolith Microchemistry Toward the Study of Latin American Fishes

&

References

  • Albuquerque, C. Q., N. Miekeley, and J. H. Muelbert. Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: A natural comparison of freshwater and marine influences on otolith chemistry. Neotrop. Ichthyol., 8: 311–320 (2010).
  • Albuquerque, C. Q., N. Miekeley, J. H. Muelbert, B. D. Walther, and A. J. Jaureguizar. Estuarine dependency in a marine fish evaluated with otolith chemistry. Mar. Biol., 159: 2229–2239 (2012).
  • Andrus, C. F. T., D. E. Crowe, and C. S. Romanek. Oxygen isotope record of the 1997-1998. El Niño in Peruvian sea catfish (Galeichthys peruvianus) otoliths. Paleoceanography, 17(4): 51–58 (2002a).
  • Andrus, C. F. T., D. E. Crowe, D. H. Sandweiss, E. J. Reitz, and C. S. Romanek. Otolith delta 18O record of mid-Holocene sea surface temperatures in Peru. Science, 295: 1508–1511 (2002b).
  • Arai, T., and T. Hirata. Determination of trace elements in otoliths of chum salmon Oncorhynchus keta by laser ablation-ICP-mass spectrometry. Fish. Sci., 72: 977–984 (2006).
  • Arai, T., T. Hirata, and Y. Takagi. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta. Mar. Environ. Res., 63: 55–66 (2007).
  • Araya, M., E. J. Niklitschek, D. H. Secor, and P. M. Piccoli. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile. Estuar. Coast. Shelf Sci., 149: 1–9 (2014).
  • Arkhipkin, A. I., P. C. Schuchert, and L. Danyushevsky. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius australis australis). Fish. Res., 96: 188–194 (2009).
  • Arslan, Z., and D. H. Secor. High resolution micromill sampling for analysis of fish otoliths by ICP-MS: Effects of sampling and specimen preparation on trace element fingerprints. Mar. Environ. Res., 66: 364–371 (2008).
  • Ashford, J., and C. Jones. Oxygen and carbon stable isotopes in otoliths record spatial isolation of Patagonian toothfish (Dissostichus eleginoides). Geochim. Cosmochim. Acta, 71: 87–94 (2007).
  • Ashford, J. R., C. M. Jones, E. Hofmann, I. Everson, C. Moreno, G. Duhamel, and R. Williams. Can otolith elemental signatures record the capture site of Patagonian toothfish (Dissostichus eleginoides), a fully marine fish in the Southern Ocean? Can. J. Fish. Aquat. Sci., 62: 2832–2840 (2005).
  • Ashford, J. R., A. I. Arkhipkin, and C. M. Jones. Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides. J. Fish Biol., 69: 708–721 (2006).
  • Ashford, J. R., C. M. Jones, E. E. Hofmann, I. Everson, C. A Moreno, G. Duhamel, and R. Williams. Otolith chemistry indicates population structuring by the Antarctic Circumpolar Current. Can. J. Fish. Aquat. Sci., 65: 135–146 (2008).
  • Ashford, J., R. Serra, J. C. Saavedra, and J. Letelier. Otolith chemistry indicates large-scale connectivity in Chilean jack mackerel (Trachurus murphyi), a highly mobile species in the Southern Pacific Ocean. Fish. Res., 107: 291–299 (2011).
  • Avigliano, E., and A. V. Volpedo. Use of otolith strontium:calcium ratio as an indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment. Mar. Freshw. Res., 64: 746–751 (2013).
  • Avigliano, E., C. F. R. Martinez, and A. V. Volpedo. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish. Res., 149: 55–60 (2014).
  • Avigliano, E., R. Callicó-Fortunato, J. Buitrago, and A. V. Volpedo. Is otolith microchemistry (Sr:Ca and Ba:Ca ratios) useful to identify Mugil curema populations in the Southeastern Caribbean Sea? Brazilian J. Biol., 75: 45–51 (2015a).
  • Avigliano, E., M. B. Saez, R. Rico, and A. V. Volpedo. Use of otolith strontium:calcium and zinc:calcium ratios as an indicator of the habitat of Percophis brasiliensis Quoy and Gaimard, 1825 in the southwestern Atlantic Ocean. Neotrop. Ichthyol., 13: 187–194 (2015b).
  • Avigliano, E., G. Velasco, and A. V. Volpedo. Assessing the use of two southwestern Atlantic estuaries by different life cycle stages of the anadromous catfish Genidens barbus (Lacépède, 1803) as revealed by Sr: Ca and Ba: Ca ratios in otoliths. J. Appl. Ichthyol., 31(4): 740–743 (2015c).
  • Avigliano, E., G. Velasco, and A. V. Volpedo. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fishes, 98: 1623–1632 (2015d).
  • Avigliano, E., M. B. Saez, R. Rico, and A. V. Volpedo. Use of otolith strontium:calcium and zinc:calcium ratios as an indicator of the habitat of Percophis brasiliensis Quoy and Gaimard, 1825 in the southwestern Atlantic Ocean. Neotrop. Ichthyol., 13: 187–194 (2015b).
  • Avigliano, E., P. Villatarco, and A. V. Volpedo. Otolith Sr:Ca ratio and morphometry as indicators of habitat of a euryhaline species: The case of the silverside Odontesthes bonariensis. Ciencias Mar., 41: 189–202 (2015e).
  • Avigliano, E., B. Carvalho, G. Velasco, P. Tripodi, M. Vianna, and A. V. Volpedo. Nursery areas and connectivity of the adults anadromous catfish (Genidens barbus) revealed by otolith core microchemistry in the southwestern Atlantic Ocean. Mar. Freshw. Res. (2016a). In press.
  • Avigliano, E., R. Callicó Fortunato, F. Biolé, A. Domanico, S. De Simone, J. J. Neiff and A.V. Volpedo. Identification of nurseries areas of Juvenile Prochilodus lineatus (Valenciennes, 1836) by scale and otolith morphometry and microchemistry. Neotrop. Ichthyol. (2016b). In press.
  • Bailey, D. S., E. Fairchild, and L. H. Kalnejais. Microchemical signatures in juvenile winter flounder otoliths provide identification of natal nurseries. Trans. Am. Fish. Soc., 144: 173–183 (2015).
  • Begg, G. A., and J. R. Waldman. An holistic approach to fish stock identification. Fish. Res., 43: 35–44 (1999).
  • Begg, G. A., S. E. Campana, A. J. Fowler, and I. M. Suthers. Otolith research and application: Current directions in innovation and implementation. Mar. Freshwater Res., 56(5) 477–483 (2005).
  • Boehler, C. T., J. G. Miner, J. R. Farver, and B. J. Fryer. Within-stream release-site fidelity of steelhead trout from Lake Erie hatchery stocks. J. Great Lakes Res., 38: 251–259 (2012).
  • Bouchard, C., S. R. Thorrold, and L. Fortier. Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Mar. Biol., 162: 855–868 (2015).
  • Braicovich, P. E., and J. T. Timi. Parasites as biological tags for stock discrimination of the Brazilian flathead Percophis brasiliensis in the south-west Atlantic. J. Fish Biol., 73: 557–571 (2008).
  • Brickman, D., J. Ashford, M. La Mesa, B. A. Fach, C. Jones, and I. Everson. Testing early life connectivity using otolith chemistry and particle-tracking simulations. Can. J. Fish. Aquat. Sci., 67: 1303–1315 (2010).
  • Brown, J. A. Using the chemical composition of otoliths to evaluate the nursery role of estuaries for English sole Pleuronectes vetulus populations. Mar. Ecol. Prog. Ser., 306: 269–281 (2006).
  • Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188: 263–297 (1999).
  • Campana, S. E. Otolith science entering the 21st century. Mar. Freshwater Res., 56(5): 485–495 (2005).
  • Campana, S. E., and J. D. Neilson. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci., 42(5): 1014–1032 (1985).
  • Campana, S. E., and S. R. Thorrold. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci., 58(1): 30–38 (2001).
  • Campana, S. E., S. R. Thorrold, C. M. Jones, D. Gunther, M. Tubrett, H. Longerich, S. Jackson, N. M. Halden, J. M. Kalish, P. Piccoli, H. de Pontual, H. Troadec, J. Panfili, D. H. Secor, K. P. Severin, S. H. Sie, R. Thresher, W. J. Teesdale, and J. L. Campbell. Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can. J. Fish. Aquat. Sci., 54: 2068–2079 (1997).
  • Casselman, J. M. Growth and relative size of calcified structures of fish. Trans. Am. Fish. Soc., 119: 673–688 (1990).
  • Chapman, M. D. The political ecology of fisheries depletion in Amazonia. Environ. Conserv., 16: 331 (1989).
  • Chittaro, P. M., R. J. Finley, and P. S. Levin. Spatial and temporal patterns in the contribution of fish from their nursery habitats. Oecologia, 160: 49–61 (2009).
  • Chittaro, P. M., B. J. Fryer, and P. F. Sale. Discrimination of French grunts (Haemulon flavolineatum, Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. J. Exp. Mar. Bio. Ecol., 308: 169–183 (2004).
  • Chittaro, P. M., P. Usseglio, B. J. Fryer, and P. F. Sale. Using otolith microchemistry of Haemulon flavolineatum (French grunt) to characterize mangroves and coral reefs throughout Turneffe Atoll, Belize: Difficulties at small spatial scales. Estuaries, 28: 373–381 (2005).
  • Chittaro, P. M., J. D. Hogan, J. Gagnon, B. J. Fryer, and P. F. Sale. In situ experiment of ontogenetic variability in the otolith chemistry of Stegastes partitus. Mar. Biol., 149: 1227–1235 (2006a).
  • Chittaro, P. M., P. Usseglio, B. J. Fryer, and P. F. Sale. Spatial variation in otolith chemistry of Lutjanus apodus at Turneffe Atoll, Belize. Estuar. Coast. Shelf Sci., 67: 673–680 (2006b).
  • Collins, S. M., N. Bickford, P. B. McIntyre, A. Coulon, A. J. Ulseth, D. C. Taphorn, and A. S. Flecker. Population structure of a neotropical migratory fish: Contrasting perspectives from genetics and otolith microchemistry. Trans. Am. Fish. Soc., 142: 1192–1201 (2013).
  • Condini, M., S. Tanner, P. Reis-Santos, C. Albuquerque, T. Saint'Pierre, J. Vieira, H. Cabral, and A. Garcia. Prolonged estuarine habitat use by dusky grouper Epinephelus marginatus at subtropical latitudes revealed by otolith microchemistry. Endanger. Species Res., 29: 271–277 (2016).
  • Dufour, E., T. O. Höök, W. P. Patterson, and E. S. Rutherford. High-resolution isotope analysis of young alewife Alosa pseudoharengus otoliths: Assessment of temporal resolution and reconstruction of habitat occupancy and thermal history. J. Fish Biol., 73: 2434–2451 (2008).
  • Edmonds, J. S., M. J. Moran, N. Caputi, and M. Morita. Trace element analysis of fish sagittae as an aid to stock identifications: Pink snapper (Chrysophrys auratus) in Western Australian waters. Can. J. Fish. Aquat. Sci., 46: 50–54 (1989).
  • Elsdon, T. S., and B. M. Gillanders. Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci., 59: 1796–1808 (2002).
  • Elsdon, T., B. Wells, S. Campana, B. Gillanders, C. Jones, K. Limburg, D. Secor, S. Throrrold, and B. Walther. Otolith chemestry to describe movemnents and life-history parameters of fish: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol., 46: 297–330 (2008).
  • FAO. The State of World Fisheries and Aquaculture. Rome, Italy (2012).
  • Fodrie, F. J., and S. Z. Herzka. (2008). Tracking juvenile fish movement and nursery contribution within arid coastal embayments via otolith microchemistry. Mar. Ecol. Prog. Ser., 361: 253–265 (2012).
  • Garcez, R. C. S., R. Humston, D. Harbor, and C. E. C. Freitas. Otolith geochemistry in young-of-the-year peacock bass Cichla temensis for investigating natal dispersal in the Rio Negro (Amazon - Brazil) river system. Ecol. Freshw. Fish, 1–10 (2014).
  • Geffen, A. J., R. D. M. Nash, and M. Dickey-Collas. Characterization of herring populations west of the British Isles: An investigation of mixing based on otolith microchemistry. ICES J. Mar. Sci., 68: 1447–1458 (2011).
  • Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf Sci., 64: 47–57 (2005).
  • Halden, N. M., and L. A. Friedrich. Trace-element distributions in fish otoliths: Natural markers of life histories, environmental conditions and exposure to tailings effluence. Mineral. Mag. 72(2): 591–603 (2008).
  • Hedger, R. D., P. M. Atkinson, I. Thibault, and J. J. Dodson. A quantitative approach for classifying fish otolith strontium: Calcium sequences into environmental histories. Ecol. Inform., 3: 207–217 (2008).
  • Hegg, J. C., T. Giarrizzo, and B. P. Kennedy. Diverse early life-history strategies in migratory Amazonian catfish: Implications for conservation and management. PLoS One, 10: e0129697 (2015).
  • Hilborn, R., J. M. L. Orensanz, and A. M. Parma. Institutions, incentives and the future of fisheries. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360: 47–57 (2005).
  • Hoolihan, J. P., J. Luo, F. J. Abascal, S. E. Campana, G. De Metrio, H. Dewar, M. L. Domeier, L. A. Howey, M. E. Lutcavage, M. K. Musyl, J. D. Neilson, E. S. Orbesen, E. D. Prince, and J. R. Rooker. Evaluating post-release behaviour modification in large pelagic fish deployed with pop-up satellite archival tags. ICES J. Mar. Sci., 68: 880–889 (2011).
  • Ibáñez, A. L., C. W. Chang, C. C. Hsu, C. H. Wang, Y. Iizuka, and W. N. Tzeng. Diversity of migratory environmental history of the mullets Mugil cephalus and M. curema in Mexican coastal waters as indicated by otolith Sr: Ca ratios. Ciencias Mar., 38: 73–87 (2012).
  • Izzo, C., Z. A. Doubleday, A. G. Schultz, S. H. Woodcock, and B. M. Gillanders. Contribution of water chemistry and fish condition to otolith chemistry: Comparisons across salinity environments. J. Fish Biol., 86: 1680–98 (2015).
  • Kerr, L. A., and S. E. Campana. Chemical composition of fish hard parts as a natural marker of fish stocks, pp. 205–234. In: Stock Identification Methods: Applications in Fishery Science. 2nd ed. (Cadrin, S. X., L. A. Kerr, and S. Mariani, Eds.). Burlington, MA: Elsevier Academic Press (2013).
  • Letcher, B. H., P. Schueller, R. D. Bassar, K. H. Nislow, J. A. Coombs, K. Sakrejda, M. Morrissey, D. B. Sigourney, A. R. Whiteley, M. J. O'Donnell, and T. L. Dubreuil. Robust estimates of environmental effects on population vital rates: An integrated capture-recapture model of seasonal brook trout growth, survival and movement in a stream network. J. Anim. Ecol., 84: 337–352 (2014).
  • Lévêque, C., T. Oberdorff, D. Paugy, M. L. J. Stiassny, and P. A. Tedesco. Global diversity of fish (Pisces) in freshwater. Hydrobiologia, 595: 545–567 (2008).
  • Lin, S. H., C. W. Chang, Y. Iizuka, and W. N. Tzeng. Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. J. Exp. Mar. Bio. Ecol., 341: 254–263 (2007).
  • Longmore, C., C. N. Trueman, F. Neat, P. E. Jorde, H. Knutsen, S. Stefanni, and S. Mariani. Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish. Can. J. Fish. Aquat. Sci., 71: 1312–1323 (2014).
  • Mai, A. C. G., M. V. Condini, C. Q. Albuquerque, D. Loebmann, T. D. Saint'Pierre, N. Miekeley, and J. P. Vieira. High plasticity in habitat use of Lycengrawulis grossidens (Clupeiformes, Engraulididae). Estuar. Coast. Shelf Sci., 141: 17–25. (2014).
  • Mariani, S., and D. Bekkevold. The nuclear genome: Neutral and adaptive markers in fisheries science, pp. 297–327. In: Stock Identification Methods: Applications in Fishery Science (Cadrin, S. X., L. A. Kerr, and S. Mariani, Eds.). Burlington, MA: Elsevier Academic Press (2013).
  • Martin, G. B., S. R. Thorrold, and C. M. Jones. Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Can. J. Fish. Aquat. Sci., 61: 34–42 (2004).
  • Martin, G. B., and M. J. Wuenschel. Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Mar. Ecol. Prog. Ser., 324: 229–239. (2006).
  • Mateo, I., E. G. Durbin, R. S. Appeldoorn, A. J. Adams, F. Juanes, R. Kingsley, P. Swart, and D. Durant. Role of mangroves as nurseries for French grunt Haemulon flavolineatum and schoolmaster Lutjanus apodus assessed by otolith elemental fingerprints. Mar. Ecol. Prog. Ser., 402: 197–212 (2010).
  • Meekan, M. G., G. M. Wellington, and L. Axe. El Nino-Southern Oscillation events produce checks in the otoliths of coral reef fishes in the Galápagos Archipelago. Bull. Mar. Sci., 64: 383–390 (1999).
  • Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: iImplications for migratory reconstructions. J. Exp. Mar. Bio. Ecol., 405: 42–52 (2011).
  • Miller, J. A., B. K. Wells, S. M. Sogard, C. B. Grimes, and G. M. Cailliet. Introduction to proceedings of the 4th International Otolith Symposium. Environ. Biol. Fishes, 89: 203–207 (2010).
  • Miloslavich, P., E. Klein, J. M. Diaz, C. E. Hernandez, G. Bigatti, L. Campos, F. Artigas, J. Castillo, P. E. Penchaszadeh, P. E. Neill, A. Carranza, M. V Retana, J. M. D. de Astarloa, M. Lewis, P. Yorio, M. L. Piriz, D. Rodriguez, Y. Yoneshigue-Valentin, L. Gamboa, and A. Martin. Marine biodiversity in the Atlantic and Pacific coasts of South America: Knowledge and gaps. PLoS ONE, 6(1): e14631 (2011).
  • Minagro. Subsecretaría de Pesca y Acuicultura, Argentina. Ministerio de Agroindustria. Available from: http://www.minagri.gob.ar/site/pesca/index.php (2016).
  • Morales-Nin, B. Review of the growth regulation processes of otolith daily increment formation. Fish. Res., 46: 53–67 (2000).
  • Morales-Nin, B., and A. J. Geffen. The use of calcified tissues as tools to support management: The view from the 5th International Otolith Symposium. ICES J. Mar. Sci., fsv150 (2015).
  • Morales-Nin, B., S. Pérez-Mayol, M. Palmer, and A. J. Geffen. Coping with connectivity between populations of Merluccius merluccius: An elusive topic. J. Mar. Syst., 138: 211–219 (2014).
  • Morales-Nin, B. Y. O. Daily increments in otoliths: Endogenous and exogenous growth regulation. In: Proceedings of the 2nd International Symposium on Fih Otolith Research and Application Radisson SAS Royal Bryggen, Bergen (1998).
  • Mullon, C., P. Fréon, and P. Cury. The dynamics of collapse in world fisheries. Fish Fish., 6: 111–120 (2005).
  • Newman, S. J., Q. Allsop, A. C. Ballagh, R. N. Garrett, N. Gribble, J. J. Meeuwig, G. E. A. Mitsopoulos, B. R. Moore, M. B. Pember, B. M. Rome, T. Saunders, C. L. Skepper, J. M. Stapley, L. van Herwerden, and D. J. Welch. Variation in stable isotope (18O and 13C) signatures in the sagittal otolith carbonate of king threadfin, Polydactylus macrochir across northern Australia reveals multifaceted stock structure. J. Exp. Mar. Bio. Ecol., 396: 53–60 (2010).
  • Niklitschek, E. J., D. H. Secor, P. Toledo, A. Lafon, and M. George-Nascimento. Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: Integrating evidence from complementary otolith microchemistry and parasite assemblage approaches. Environ. Biol. Fishes, 89: 399–413 (2010).
  • Niklitschek, E. J., D. H. Secor, P. Toledo, X. Valenzuela, L. A. Cubillos, and A. Zuleta. Nursery systems for Patagonian grenadier off Western Patagonia: Large inner sea or narrow continental shelf? ICES J. Mar. Sci. J. du Cons., 71: 374–390 (2014).
  • Oliveira, A. M., M. Farina, I. P. Ludka, and B. Kachar. Vaterite, calcite, and aragonite in the otoliths of three species of piranha. Naturwissenschaften, 83: 133–135 (1996).
  • Panella, G. Fish otoliths: Daily growth layers and periodical patterns. Science, 173: 1124–1127 (1971).
  • Patterson, H. M., S. R. Thorrold, and J. M. Shenker. Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral Reefs, 18: 171–178 (1999).
  • Patterson, H. M., R. S. McBride, and N. Julien. Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Mar. Biol., 144: 855–862 (2004).
  • Pouilly, M., D. Point, F. Sondag, M. Henry, and R. V Santos. Geographical origin of Amazonian freshwater fishes fingerprinted by (87)Sr/(86)Sr ratios on fish otoliths and scales. Environ. Sci. Technol., 48: 8980–8987 (2014a).
  • Pouilly, M., D. Point, F. Sondag, M. Henry, and R. V. Santos. Amazonian freshwater fish geographical origin based on fish otolith and scale 87Sr/86Sr ratio. Environ. Sci. Technol., 48: 8980–8987 doi: 10.1021/es500071w (2014b).
  • Poulet, N., Y. Reyjol, H. Collier, and S. Lek. Does fish scale morphology allow the identification of populations at a local scale? A case study for rostrum dace Leuciscus leuciscus burdigalensis in River Viaur (SW France). Aquat. Sci., 67: 122–127 (2005).
  • Queiroz, M. M. A., A. M. C. Horbe, P. Seyler, and C. A. V. Moura. Hidroquímica do rio Solimões na região entre Manacapuru e Alvarães: Amazonas - Brasil. Acta amaz., 39(4): 943–952 (2009).
  • Raabe, J., and B. Gardner. A spatial capture–recapture model to estimate fish survival and location from linear continuous monitoring arrays. Can. J. Fish. Aquat. Sci., 130: 120–130 (2013).
  • Radtke, R., and D. Shafer. Environmental sensitivity of fish otolith microchemistry. Mar. Freshw. Res., 43(5): 935–951 (1992).
  • Ranaldi, M. M., and M. M. Gagnon. Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): The influence of dietary versus waterborne sources. J. Exp. Mar. Bio. Ecol., 360: 56–62 (2008).
  • Reis-Santos, P., S. E. Tanner, S. França, R. P. Vasconcelos, B. M. Gillanders, and H. N. Cabral. Connectivity within estuaries: An otolith chemistry and muscle stable isotope approach. Ocean Coast. Manag., 118: 51–59. (2015).
  • Riva-Rossi, C., M. A. Pascual, J. A. Babaluk, M. García-Asorey, and N. M. Halden. Intra-population variation in anadromy and reproductive life span in rainbow trout introduced in the Santa Cruz River, Argentina. J. Fish Biol., 70: 1780–1797 (2007).
  • Rooker, J. R., D. H. Secor, G. DeMetrio, A. J. Kaufman, A. B. Ríos, and V. Tičina. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser., 368: 231–239 (2008).
  • Rooker, J. R., H. Arrizabalaga, I. Fraile, D. H. Secor, D. L. Dettman, N. Abid, P. Addis, S. Deguara, F. S. Karakulak, A. Kimoto, O. Sakai, D. Macías, and M. N. Santos. Crossing the line: Migratory and homing behaviors of Atlantic bluefin tuna. Mar. Ecol. Prog. Ser., 504: 265–276 (2014).
  • Ruttenberg, B. I., and R. R. Warner. Spatial variation in the chemical composition of natal otoliths from a reef fish in the Galapagos Islands. Mar. Ecol. Ser., 328: 225–236 (2006).
  • Scartascini, F. L., and A. V. Volpedo. White croaker (Micropogonias furnieri) paleodistribution in the southwestern Atlantic ocean. An archaeological perspective. J. Archaeol. Sci., 40: 1059–1066 (2013).
  • Schloesser, R. W., J. D. Neilson, D. H. Secor, and J. R. Rooker. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ 13 C and δ 18 O. Can. J. Fish. Aquat. Sci., 67: 563–569 (2010).
  • Schuchert, P. C., A. I. Arkhipkin, and A. E. Koenig. Traveling around Cape Horn: Otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds. Fish. Res., 102: 80–86 (2010).
  • Secor, D. H. Is otolith science transformative? New views on fish migration. Environ. Biol. Fishes, 89: 209–220 (2010).
  • Secor, D. H., and J. R. Rooker. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish. Res., 46: 359–371 (2000).
  • Sims, D. W., N. Queiroz, T. K. Doyle, J. D. R. Houghton, and G. C. Hays. Satellite tracking of the World's largest bony fish, the ocean sunfish (Mola mola L.) in the North East Atlantic. J. Exp. Mar. Bio. Ecol., 370: 127–133 (2009).
  • Stanley, R., I. R. Bradbury, C. DiBacco, P. V. R. Snelgrove, S. R. Thorrold, and S. S. Killen. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J. Mar. Sci. J. du Cons. fsv070., 71: 236–240 (2015).
  • Staszny, Á., Á. Ferincz, A. Weiperth, E. Havas, B. Urbányi, and G. Paulovits. Scale-morphometry study to discriminate gibel carp (Carassius gibelio) populations in the balaton-catchment (Hungary). Acta Zool. Acad. Sci. Hungaricae, 58: 19–27 (2012).
  • Sturrock, A. M., C. N. Trueman, A. M. Darnaude, and E. Hunter. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J. Fish Biol., 81: 766–795 (2012).
  • Swan, S. C., J. D. M. Gordon, and T. Shimmield. Preliminary investigations on the uses of otolith microchemistry for stock discrimination of the deep-water black scabbardfish (Aphanopus carbo) in the North East Atlantic. J. Northwest Atl. Fish. Sci., 31: 221–231 (2003).
  • Tabouret, H., G. Bareille, F. Claverie, C. Pécheyran, P. Prouzet, and O. F. X. Donard. Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Mar. Environ. Res., 70: 35–45 (2010).
  • Tanner, S. E., M. Pérez, P. Presa, S. R. Thorrold, and H. N. Cabral. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius). Estuar. Coast. Shelf Sci., 142: 68–75 (2014).
  • Tanner, S. E., P. Reis-Santos, and H. N. Cabral. Otolith chemistry in stock delineation: A brief overview, current challenges and future prospects. Fish. Res., 173: 206–213. doi: 10.1016/j.fishres.2015.07.019 (2015).
  • Thorrold, S. R., C. Latkoczy, P. K. Swart, and C. M. Jones. Natal homing in a marine fish metapopulation. Science, 291: 297–299 (2001).
  • Thresher, R. E. (1999). Elemental composition of otoliths as a stock delineator in fishes. Fish. Res., 43: 165–204 (2001).
  • Timi, J. T., J. L. Luque, and N. H. Sardella. Parasites of Cynoscion guatucupa along South American Atlantic coasts: Evidence for stock discrimination. J. Fish Biol., 67: 1603–1618 (2005).
  • Valle, S. R., and S. Z. Herzka. Natural variability in 18O values of otoliths of young Pacific sardine captured in Mexican waters indicates subpopulation mixing within the first year of life. ICES J. Mar. Sci., 65: 174–190 (2008).
  • Vasconcelos, R. P., P. Reis-Santos, S. Tanner, A. Maia, C. Latkoczy, D. Günther, M. J. Costa, and H. Cabral. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci., 79: 317–327 (2008).
  • Velasco, G., E. G. Reis, and J. P. Vieira. Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. J. Appl. Ichthyol., 23: 64–69 (2007).
  • Volpedo, A. V, and A. F. Cirelli. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Sci. Mar., 70: 325–334 (2006).
  • Walther, B. D., and S. R. Thorrold. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar. Ecol. Prog. Ser., 311: 125–130 (2006).
  • Walther, B. D., and S. R. Thorrold. Inter-annual variability in isotope and elemental ratios recorded in otoliths of an anadromous fish. J. Geochemical Explor., 102: 181–186 (2009).
  • Wells, B. K., B. E. Rieman, J. L. Clayton, D. L. Horan, and C. M. Jones. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d'Alene River, Idaho: The potential application of hard-part chemistry to describe movements in freshwater. Trans. Am. Fish. Soc., 132(3): 409–424 (2003).
  • Whitledge, G. W., B. M. Johnson, and P. J. Martinez. Stable hydrogen isotopic composition of fishes reflects that of their environment. J. Fish. Aquat. Sci., 63(8): 1746–1751 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.