5,264
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Using Machine Learning to Uncover Latent Research Topics in Fishery Models

ORCID Icon & ORCID Icon

References

  • Aksnes, D. W., and H. I. Browman. An overview of global research effort in fisheries science. ICES J. Mar. Sci.: J. du Conseil, 73(4): 1004–1011 (2016). doi:10.1093/icesjms/fsv248.
  • Aletras, N., and M. Stevenson. Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013). Association for Computational Linguistics, 13–22 (2013).
  • Allen, K. R. A method of fitting growth curves of the von bertalanffy type to observed data. J. Fish. Res. Board Can., 23(2): 163–179 (1966). doi:10.1139/f66-016.
  • Angelini, R., and C. L. Moloney. Fisheries, ecology and modelling: An historical perspective. Pan-Am. J. Aquat. Sci., 2(2): 75–85 (2007).
  • Asuncion, A., M. Welling, P. Smyth, and Y. W. Teh. On smoothing and inference for topic models. Proc. Twenty-Fifth Conf. Uncertainty Artif. Intell., (Ml): 27–34 (2012).
  • Baker, M. R., D. E. Schindler, T. E. Essington, and R. Hilborn. Accounting for escape mortality in fisheries: Implications for stock productivity and optimal management. Ecol. Appl., 24(1): 55–70 (2014). doi:10.1890/12-1871.1.
  • Bastardie, F., J. R. Nielsen, and T. Miethe. DISPLACE: A dynamic, individual-based model for spatial fishing planning and effort displacement — integrating underlying fish population models. Can. J. Fish Aquat. Sci., 71(3): 366–386 (2014). doi:10.1139/cjfas-2013-0126.
  • von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol., 32(3): 217–231 (1957). doi:10.1086/401873.
  • Bjørndal, T., D. E. Lane, and A. Weintraub. Operational research models and the management of fisheries and aquaculture: A review. Eur. J. Oper. Res., 156(3): 533–540 (2004). doi:10.1016/S0377-2217(03)00107-3.
  • Blei, D. M. Communications of the ACM, 55(4): 77–84 (2012). doi: 10.1145/2133806.2133826.
  • Blei, D. M., and M. I. Jordan. Variational inference for dirichlet process mixtures. Bayesian Anal., 1(1): 121–143 (2006). doi:10.1214/06-BA104.
  • Blei, D. M., and J. D. Lafferty. Dynamic topic models. In: Proceedings of the 23rd international conference on Machine learning – ICML '06. New York, NY: ACM Press, 113–120 (2006). doi:10.1145/1143844.1143859
  • Blei, D. M., A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Machine Learn. Res., 3: 993–1022 (2003).
  • Bouma, G. Normalized (Pointwise) mutual information in collocation extraction. In: Proceedings of German Society for Computational Linguistics (GSCL 2009). 31–40 (2009).
  • Caddy, J. F. Current usage of fisheries indicators and reference points, and their potential application to management of fisheries for marine invertebrates. Can. J. Fish. Aquat. Scie., 61(8): 1307–1324 (2004). doi:10.1139/f04-132.
  • Caddy, J. F., and R. Mahon. Reference points for fisheries management, vol. 347. Food and Agriculture Organization (FAO) Fisheries Technical Paper. Rome: FAO (1995).
  • Cadrin, S. X., and M. Dickey-Collas. Stock assessment methods for sustainable fisheries. ICES J. Mar. Sci., 72(1): 1–6 (2015). doi:10.1093/icesjms/fsu228.
  • Chuang, J., D. Ramage, C. D. Manning, and J. Heer. Interpretation and trust: Designing model-driven visualizations for text analysis. pp. 443–452. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (G. Rebecca, T. Rodden, P. Aoki, E. Cutrell, J. Robin and G. Olson, Eds). Montreal, Canada: ACM.
  • Debortoli, S., O. Müller, I. Junglas, and J. Vom Brocke. Text mining for information systems researchers: An annotated topic modeling tutorial. Commun. Assoc. Inf. Syst., 39: 110–135 (2016).
  • Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci., 41(6): 391–407 (1990). doi:10.1002/(SICI)1097-4571(199009)41:6%3c391::AID-ASI1%3e3.0.CO;2-9.
  • DiMaggio, P., M. Nag, and D. Blei. Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding. Poetics, 41(6): 570–606 (2013). doi:10.1016/j.poetic.2013.08.004.
  • Epstein, J. M. Why model? J. Artif. Soc. Soc. Simul., 11(4): 12 (2008).
  • Evangelopoulos, N., X. Zhang, and V. R. Prybutok. Latent Semantic Analysis: Five methodological recommendations. Eur. J. Inf. Syst., 21(1): 70–86 (2012). doi:10.1057/ejis.2010.61.
  • FAO. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome (2016).
  • Froese, R., N. Demirel, G. Coro, K. M. Kleisner, and H. Winker. Estimating fisheries reference points from catch and resilience. Fish Fish., 18(3): 506–526 (2017). doi:10.1111/faf.12190.
  • Gaichas, S. K., M. Fogarty, G. Fay, R. Gamble, S. Lucey, and L. Smith. Combining stock, multispecies, and ecosystem level fishery objectives within an operational management procedure: Simulations to start the conversation. ICES J. Mar. Sci.: J. du Conseil, 74(2): 552–565 (2017).
  • Le Gallic, B. Fisheries Sustainability Indicators : The OECD experience. Joint workshop on “Tools for measuring (integrated) Fisheries Policy aiming at sustainable ecosystem”. Brussels: OECD (2002).
  • Gerl, T., H. Kreibich, G. Franco, D. Marechal, and K. Schröter. A review of flood loss models as basis for harmonization and benchmarking. PLOS ONE, 11(7): e0159791 (2016). doi:10.1371/journal.pone.0159791.
  • Griffiths, S. P., and G. Fay. Integrating recreational fisheries data into stock assessment: Implications for model performance and subsequent harvest strategies. Fish. Manage. Ecol., 22(3): 197–212 (2015). doi:10.1111/fme.12117.
  • Griffiths, T. L., and M. Steyvers. Finding scientific topics. Proc. Nat. Acad. Sci., 101( Supplement 1): 5228–5235 (2004). doi:10.1073/pnas.0307752101.
  • Griffiths, T. L., M. Steyvers, and J. B. Tenenbaum. Topics in semantic representation. Psychol. Rev., 114(2): 211–244 (2007).
  • Haapasaari, P., S. Mäntyniemi, and S. Kuikka. Baltic herring fisheries management: Stakeholder views to frame the problem. Ecol. Soc., 17(3): art36 (2012). doi:10.5751/ES-04907-170336.
  • Hilborn, R., and C. J. Walters Quantitative fisheries stock assessment : Choice, dynamics and uncertainty. New York, NY: Chapman & Hall (1992).
  • Hoffman, M. D., D. M. Blei, and F. Bach. Online learning for latent Dirichlet allocation. Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, Vol. 1, pp. 856–864. USA: Curran Associates Inc. (2010).
  • Hofmann, T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, USA, 50–57. New York: ACM. isbn = 1-58113-096-1 (1999). doi = 10.1145/312624.312649
  • Hoggarth, D. D., S. Abeyasekera, R. I. Arthur, J. R. Beddington, R. W. Burn, A. S. Halls, G. P. Kirkwood, M. McAllister, P. Medley, C. C. Mees, G. B. Parkes, G. M. Pilling, R. C. Wakeford, and R. L. Welcomme. Stock assessment for fishery management : A framework guide to the stock assessment tools of the fisheries management and science programme. FAO Fish. Tech. Pap., 487 (2006).
  • ICES. Report of the SIHD survey of the current state of ‘human dimension' in some ICES groups, 31 pp. (2016).
  • ICES. SIHD [online]. Strategic Initiative on the Human Dimension. Available from: http://www.ices.dk/community/groups/Pages/SIHD.aspx (2017).
  • Jarić, I., G. Cvijanović, J. Knežević-Jarić, and M. Lenhardt. Trends in fisheries science from 2000 to 2009: A bibliometric study. Rev. Fish. Sci., 20(2): 70–79 (2012). doi:10.1080/10641262.2012.659775.
  • Jennings, S. Indicators to support an ecosystem approach to fisheries. Fish Fish., 6(3): 212–232 (2005). doi:10.1111/j.1467-2979.2005.00189.x.
  • Larsen, P. O., and M. von Ins. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics, 84(3): 575–603 (2010). doi:10.1007/s11192-010-0202-z.
  • Lorenzen, K. Toward a new paradigm for growth modeling in fisheries stock assessments: Embracing plasticity and its consequences. Fish. Res., 180: 4–22 (2016).
  • Maunder, M. N., P. R. Crone, A. E. Punt, J. L. Valero, and B. X. Semmens. Growth: Theory, estimation, and application in fishery stock assessment models. Fish. Res., 180: 1–3 (2016).
  • Maynou, F. Coviability analysis of western mediterranean fisheries under MSY scenarios for 2020. ICES J. Mar. Sci., 71(7): 1563–1571 (2014). doi:10.1093/icesjms/fsu061.
  • Minto, C., and C. Lordan. GEPETO: Review of mixed fisheries modelling approaches for the Celtic Sea (2014).
  • Möllmann, C., M. Lindegren, T. Blenckner, L. Bergström, M. Casini, R. Diekmann, J. Flinkman, B. Müller-Karulis, S. Neuenfeldt, J. O. Schmidt, M. Tomczak, R. Voss, and A. Gårdmark. Implementing ecosystem-based fisheries management: From single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J. Mar. Sci., 71(5): 1187–1197 (2014). doi:10.1093/icesjms/fst123.
  • Oecd. Main science and technology indicators. Sci. Technol., 2008: 104 (2008).
  • Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939): 419–422 (2009). doi:10.1126/science.1172133.
  • Partelow, S. Key steps for operationalizing social–ecological system framework research in small-scale fisheries: A heuristic conceptual approach. Mar. Pol., 51: 507–511 (2015).
  • Piner, K. R., H.-H. Lee, and M. N. Maunder. Evaluation of using random-at-length observations and an equilibrium approximation of the population age structure in fitting the von Bertalanffy growth function. Fish. Res., 180(180): 128–137 (2016).
  • Plagányi, E. E. Models for an ecosystem approach to fisheries. FAO Fisheries Technical Paper, 477. Rome: FAO, pp. 10 (2007).
  • Prellezo, R., P. Accadia, J. L. Andersen, B. S. Andersen, E. Buisman, A. Little, J. R. Nielsen, J. J. Poos, J. Powell, and C. Röckmann. A review of EU bio-economic models for fisheries: The value of a diversity of models. Mar. Pol., 36(2): 423–431 (2012).
  • Quinn, K. M., B. L. Monroe, M. Colaresi, M. H. Crespin, and D. R. Radev. How to analyze political attention with minimal assumptions and costs. Am. J. Polit. Sci., 54(1): 209–228 (2010). doi:10.1111/j.1540-5907.2009.00427.x.
  • Rehurek, R., and P. Sojka. Software framework for topic modelling with large corpora, pp. 46–50. In: Proceedings of the LREC 2010 Workshop New Challenges for NLP Frameworks. Valletta, Malta: University of Malta. DOI: 10.13140/2.1.2393.1847. ISBN 2-9517408-6-7 (2010).
  • Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can., 191: 1–382 (1975).
  • Röder, M., A. Both, and A. Hinneburg. Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, pp. 399–408. New York, NY, USA: ACM. ISBN 978-1-4503-3317-7 (2015).
  • Sievert, C., and K. Shirley. LDAvis: A method for visualizing and interpreting topics. In: Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. 63–70 (2014).
  • Simpfendorfer, C. A. and N. K. Dulvy. Bright spots of sustainable shark fishing. Curr. Biol., 27(3): R97–R98 (2017).
  • Srivastava, A., and M. Sahami. Text mining: Classification, clustering, and applications. Boca Raton, FL: CRC Press (2009).
  • Stevens, K., P. Kegelmeyer, D. Andrzejewski, and D. Buttler. Exploring topic coherence over many models and many topics. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 952–961 (2012).
  • Syed, S., and M. Spruit. Full-text or abstract? Examining topic coherence scores using latent dirichlet allocation. In: The 4th IEEE International Conference on Data Science and Advanced Analytics. IEEE, 165–174 (2017). doi:10.1109/DSAA.2017.61.
  • Teh, Y. W., D. Newman, M. Welling, and D. Neaman. A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In: NIPS'06 Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada. 1353–1360 MA, USA: MIT Press Cambridge (2006).
  • Turpie, J. K., B. J. Heydenrych, and S. J. Lamberth. Economic value of terrestrial and marine biodiversity in the cape floristic region: Implications for defining effective and socially optimal conservation strategies. Biol. Conserv., 112(1–2): 233–251 (2003).
  • Urquhart, C. An encounter with grounded theory : Tackling the practical and philosophical issues, pp. 104–140. Qual. Res. Inf. Syst.: Issues Trends, (E. M. Trauth, Ed.). Hershey, PA, USA: IGI Global (2001). DOI: 10.4018/978-1-930708-06-8.ch005.
  • Wang, C., J. Paisley, and D. M. Blei. Online variational inference for the hierarchical dirichlet process, vol 15, pp. 752–760. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, (G. Gordon, D. Dunson and M. Dudík, Eds.). Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR (2011).
  • Yodzis, P. Predator-prey theory and management of multispecies fisheries. Ecol. Appl., 4(1): 51–58 (1994).