869
Views
1
CrossRef citations to date
0
Altmetric
Reviews

A Concise Review on the Recent Developments in the Internet of Things (IoT)-Based Smart Aquaculture Practices

ORCID Icon, ORCID Icon, &

References

  • Abakari G, Luo G, Kombat EO. 2021. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: a review. Aquac Fish. 6(5):441–447. doi:10.1016/j.aaf.2020.05.005
  • Acar U, Kane F, Vlacheas P, Foteinos V, Demestichas P, Yücetürk G, Drigkopoulou I, Vargün A. 2019. Designing an IoT cloud solution for aquaculture, in: 2019 Global IoT Summit (GIoTS). IEEE, pp. 1–6. doi:10.1109/GIOTS.2019.8766428
  • Adi PDP, Kitagawa A. 2019. ZigBee Radio Frequency (RF) performance on raspberry Pi 3 for internet of things (IoT) based blood pressure sensors monitoring. Int J Adv Comput Sci Appl. 10:18–27.
  • Africa ADM, Aguilar JCCA, Lim CMS, Pacheco PAA, Rodrin SEC. 2017. Automated aquaculture system that regulates Ph, temperature and ammonia. In: 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, pp. 1–6.
  • Al Aani S, Bonny T, Hasan SW, Hilal N. 2019. Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? Desalination. 458:84–96. doi:10.1016/j.desal.2019.02.005
  • Allen L, Benoist B. D, Dary O, Hurrell R. 2006. Guidelines on food fortification with micronutrients. Who, Fao Un. 341. doi:10.1242/jeb.02490.
  • Antwi P, Zhang D, Luo W, Xiao L, WenMeng J, Kabutey FT, Ayivi F, Li J. 2019. Performance, microbial ­community evolution and neural network modeling of single-stage nitrogen removal by partial-nitritation/anammox process. Bioresour Technol. 284:359–372. doi:10.1016/j.biortech.2019.03.008
  • Arakliotis S, Nikolos DG, Kalligeros E. 2016. Lawris: a rule-based Arduino programming system for young students. In: 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, pp. 1–4. doi:10.1109/MOCAST.2016.7495150
  • Arefin Mozumder S, Sharifuzzaman Sagar ASM. 2021. Smart IoT-Biofloc water management system using Decision regression tree. arXiv e-prints arXiv-2112.
  • Badamasi YA. 2014. The working principle of an Arduino. In: Proceedings of the 11th International Conference on Electronics, Computer and Computation, ICECCO 2014. doi:10.1109/ICECCO.2014.6997578.
  • Balakrishnan S, Sheeba Rani S, Ramya KC. 2019. Design and development of iot based smart aquaculture system in a cloud environment. Int J Ocean Oceanogr. 13:121–127.
  • Barulin NV. 2019. Using machine learning algorithms to analyse the scute structure and sex identification of sterlet Acipenser ruthenus (Acipenseridae). Aquac Res. 50(10):2810–2825. doi:10.1111/are.14233
  • Basnet B, Bang J. 2018. The state-of-the-art of knowledge-intensive agriculture: a review on applied sensing systems and data analytics. J Sensors. 2018:1–1. doi:10.1155/2018/7425720
  • Bergheim A, Schumann M, Brinker A. 2019. Water pollution from fish farms. Encycl Water Sci Technol Soc. 1:1–10.
  • Beveridge MCM, Thilsted SH, Phillips MJ, Metian M, Troell M, Hall SJ. 2013. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculturea. J Fish Biol. 83(4):1067–1084. doi:10.1111/jfb.12187
  • Boyd CE, Tucker CS, Viriyatum R. 2011. Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries. N Am J Aquac. 73(4):403–408. doi:10.1080/15222055.2011.620861
  • Brochu N, Gong L, Greener J, Miled A. 2020. Ultra-low power pH sensor powered by microbial fuel cells. In: Microfluidics, BioMEMS, and Medical Microsystems XVIII. International Society for Optics and Photonics, p. 112350L. doi:10.1117/12.2547233
  • Brock JD, Bruce RF, Reiser SL. 2009. Using Arduino for introductory programming courses. J Comput Sci Coll. 25:129–130.
  • Brous P, Janssen M, Herder P. 2019. Internet of Things adoption for reconfiguring decision-making processes in asset management. BPMJ. 25(3):495–511. doi:10.1108/BPMJ-11-2017-0328/FULL/HTML
  • Chakrabarti S. 2016. The Fisheries and Aquaculture Advantage: Fostering food security and nutrition, increasing.
  • Chang C-C, Wang J-H, Wu J-L, Hsieh Y-Z, Wu T-D, Cheng S-C, Chang C-C, Juang J-G, Liou C-H, Hsu T-H, et al. 2021. Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. J Med Biol Eng. 41:652–658. doi:10.1007/s40846-021-00621-3
  • Chatvijitkul S, Claude EB, Allen D. 2015. Aquaculture feed composition helps define potential for water pollution. Retrieved July 17, 2020.
  • Chen W, Hao X, Lu J, Yan K, Liu J, He C, Xu X. 2021. Research and design of distributed iot water environment monitoring system based on LoRa. Wirel Commun Mob Comput. 2021:1–13. doi:10.1155/2021/9403963
  • Chen WP, Wang LK, Wang TT, Chen YT. 2013. An Intelligent Management System for Aquaculture’s Environmental Monitoring and Energy Conservation. In: Proceedings of the 2013 International Workshop on Computer Science in Sports. doi:10.2991/iwcss-13.2013.52
  • Chhabra N. 2013. Comparative analysis of different wireless technologies. Int J Sci Res Netw Secur Commun. 1:13–17.
  • Chouler J, Di Lorenzo M. 2015. Water quality monitoring in developing Countries; Can microbial fuel cells be the answer? Biosensors (Basel). 5(3):450–470. doi:10.3390/bios5030450
  • Chrispin LC, Jothiswaran VV, Velumani T, Agnes DAS, Jayaraman R. 2020. Application of artificial intelligence in fisheries and aquaculture. Biot Res Today. 2:499–502. doi:10.1016/j.chemosphere.2018.02.111
  • Collotta M, Pau G, Talty T, Tonguz OK. 2018. Bluetooth 5: a concrete step forward toward the IoT. IEEE Commun Mag. 56(7):125–131. doi:10.1109/MCOM.2018.1700053
  • Cordova-Rozas M, Aucapuri-Lecarnaque J, Shiguihara-Juárez P. 2019. A cloud monitoring system for aquaculture using iot. In: 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON). IEEE, pp. 1–4. doi:10.1109/SHIRCON48091.2019.9024849
  • Daoliang LI, Chang LIU. 2020. Recent advances and future outlook for artificial intelligence in aquaculture. Smart Agric. 2(3):1–20.
  • Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO. 2019. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac Fish. 4(3):81–88. doi:10.1016/j.aaf.2018.10.002
  • Deb S, Noori MT, Rao PS. 2020. Application of biofloc technology for Indian major carp culture (polyculture) along with water quality management. Aquac Eng. 91:102106. doi:10.1016/j.aquaeng.2020.102106
  • Deb S, Noori MT, Srinivasa Rao P. 2017. Experimental study to evaluate the efficacy of locally available waste carbon sources on aquaculture water quality management using biofloc technology. Aquacult Int. 25(6):2149–2159. doi:10.1007/s10499-017-0180-8
  • Deekshath MR, Dharanya MP, Kabadia MKRD, Dinakaran MGD, Shanthini S. 2018. IoT based environmental monitoring system using arduino UNO and thingspeak. Int J Sci Technol Eng. 4(9):68–75.
  • Dhenuvakonda K, Sharma A. 2020. Mobile apps and internet of things (IoT): a promising future for Indian fisheries and aquaculture sector. Artic. J Entomol Zool Stud. 8(1):1659–1669.
  • Dhenuvakonda K, Sharma A, Prasad KP, Sharma R. 2019. Socioeconomic profile of fish farmers of telangana and usage of mobile apps. AJAEES. 1–9. doi:10.9734/ajaees/2019/v37i330268
  • Doudoroff P, Shumway DL. 1970. Dissolved oxygen requirements of freshwater fishes.
  • Duan Y, Edwards JS, Dwivedi YK. 2019. Artificial intelligence for decision making in the era of big data: evolution, challenges and research agenda. Int J Inf Manage. 48:63–71. doi:10.1016/j.ijinfomgt.2019.01.021
  • Dzulqornain MI, Harun Al Rasyid MU, Sukaridhoto S. 2018. Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration. In: MATEC Web of Conferences. doi:10.1051/matecconf/201816401030
  • El Khaddar MA, Boulmalf M. 2017. Smartphone: the ultimate IoT and IoE device. Smartphones Appl Res Perspect. Chapter 7:137–162.
  • Elazhary H. 2019. Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: disambiguation and research directions. J. Netw Comput Appl. doi:10.1016/j.jnca.2018.10.021.
  • Elkiran G, Nourani V, Abba SI. 2019. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol. 577:123962. doi:10.1016/j.jhydrol.2019.123962
  • Encinas C, Ruiz E, Cortez J, Espinoza A. 2017. Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture, in: Wireless Telecommunications Symposium. doi:10.1109/WTS.2017.7943540
  • Engle CR, Kumar G, Senten J. 2020. Cost drivers and profitability of U.S. pond, raceway, and RAS aquaculture. J World Aquacult Soc. 51(4):847–873. doi:10.1111/jwas.12706
  • Evans B. 2011. Beginning arduino programming. Berlin: Springer.
  • Fan M, Hu J, Cao R, Ruan W, Chemosphere XW. 2018. U., n.d. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Amsterdam: Elsevier. doi:10.1016/j.chemosphere.2018.02.111
  • FAO, F. and A.O. 2017. Fao 2017. Fao 2017.
  • Figueroa R, Araneda M, … K C-P. 2018. GenDataSave: Information management platform for aquaculture genetic improvement programs optimized by means of parallel computing. researchgate.net.
  • Geetha S, Gouthami S. 2016. Internet of things enabled real time water quality monitoring system. Smart Water. 2(1). doi:10.1186/s40713-017-0005-y
  • Godoy-Olmos S, Jauralde I, Monge-Ortiz R, Milián-Sorribes MC, Jover-Cerdá M, Tomás-Vidal A, Martínez-Llorens S. 2022. Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquac Int. 30(2):581–606.
  • Gupta S, Gupta A, Hasija Y. 2022. Transforming IoT in aquaculture: a cloud solution. In: AI, Edge and IoT-Based Smart Agriculture. Amsterdam: Elsevier, p. 517–531.
  • Hargreaves JA, Tucker CS. 2004. Managing ammonia in fish ponds. Southern Regional Aquaculture Center Stoneville.
  • Haseeb K, Ud Din I, Almogren A, Islam N. 2020. An energy efficient and secure IoT-based WSN framework: an application to smart agriculture. Sensors. 20(7):2081. doi:10.3390/s20072081
  • He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. 2019. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 25(1):30–36. doi:10.1038/s41591-018-0307-0
  • Hong SR, Jeong HD, Hong S. 2010. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV. Talanta. 82(3):899–903. doi:10.1016/j.talanta.2010.04.065
  • Hongpin L, Guanglin L, Weifeng P, Jie S, Qiuwei B. 2015. Real-time remote monitoring system for aquaculture water quality. Int J Agric Biol Eng. 8:136–143.
  • Hu Z, Li R, Xia X, Yu C, Fan X, Zhao Y. 2020. A method overview in smart aquaculture. Environ Monit Assess. 192. doi:10.1007/S10661-020-08409-9
  • Huan J, Li H, Wu F, Cao W. 2020. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac Eng. 90:102088. doi:10.1016/j.aquaeng.2020.102088
  • Huan J, Li H, Wu F, Engineering WC-A. 2020. Undefined, n.d. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Amsterdam: Elsevier.
  • Hussain M, Amin Y, Lee K-G. 2020. A compact and flexible UHF RFID tag antenna for massive IoT devices in 5G system. Sensors. 20(19):5713. doi:10.3390/s20195713
  • Jan F, Min-Allah N, Düştegör D. 2021. Iot based smart water quality monitoring: recent techniques, trends and challenges for domestic applications. Water. 13(13):1729. doi:10.3390/w13131729
  • Javvaji KSS, Hussain MA. 2020. Prototype of Aquaculture using IoT Technologies. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, pp. 1–4. doi:10.1109/ICCCNT49239.2020.9225519
  • Jothiswaran V, … T V, B R. 2020. Application of artificial intelligence in fisheries and aquaculture. Bioticainternational.com 2:499–502.
  • Kalyani Y, Collier R, Sensors, RC. 2021. A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. mdpi.com. Sensors. 21(17):5922., doi:10.3390/s21175922
  • Kamaruidzaman NS, Nazahiyah Rahmat S. 2020. Water monitoring system embedded with internet of things (IoT) device: a review. IOP Conf Ser: Earth Environ Sci. 498(1):012068. doi:10.1088/1755-1315/498/1/012068
  • Karim S, Hussain I, Hussain A, Hassan K, Iqbal S. 2021. IoT based smart fish farming aquaculture monitoring system. Int J Emerg Technol. 12:45–53.
  • Kemker C. 2014. Dissolved Oxygen-Environmental Measurement Systems.
  • Kidwell JM, Phillips LJ, Birchard GF. 1995. Comparative analyses of contaminant levels in bottom feeding and predatory fish using the national contaminant biomonitoring program data. Bull Environ Contam Toxicol. 54(6). doi:10.1007/BF00197979
  • Kisi O, Alizamir M, Docheshmeh Gorgij AR. 2020. Dissolved oxygen prediction using a new ensemble method. Environ Sci Pollut Res Int. 27(9):9589–9603. doi:10.1007/s11356-019-07574-w
  • Klumpp M. 2018. Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. Int J Logist Res Appl. 21(3):224–242. doi:10.1080/13675567.2017.1384451
  • Kong W, Huang S, Yang Z, Shi F, Feng Y, Khatoon Z. 2020. Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments. Sci Rep. 10:1–15.
  • Kumar G, Engle C, Tucker C. 2018. Factors driving aquaculture technology adoption. J World Aquacult Soc. 49(3):447–476. doi:10.1111/jwas.12514
  • Kumar NH, Baskaran S, Hariraj S, Krishnan V. 2016. An autonomous aquaponics system using 6LoWPAN based WSN. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). IEEE, p. 125–132. doi:10.1109/W-FiCloud.2016.37
  • Lambrou TP, Anastasiou CC, Panayiotou CG, Polycarpou MM. 2014. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sensors J. 14(8):2765–2772. doi:10.1109/JSEN.2014.2316414
  • Lee PG. 2000. Process control and artificial intelligence software for aquaculture. Aquac Eng. 23(1–3):13–36. doi:10.1016/S0144-8609(00)00044-3
  • Li B. h, Hou B. C, Yu W. T, Lu. X B, Yang C. W. 2017. Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng. 10.1631/FITEE.1601885.
  • Li D, Li C. 2020. Intelligent aquaculture. J World Aquacult Soc. 51(4):808–814. doi:10.1111/jwas.12736
  • Li D, Liu S. 2013. Remote monitoring of water quality for intensive fish culture. In: Smart Sensors for Real-Time Water Quality Monitoring. Berlin: Springer, p. 217–238.
  • Liu Y, Han W, Zhang Y, Li L, Wang J, Zheng L. 2016. An Internet-of-things solution for food safety and quality control: a pilot project in China. J Ind Inf Integr. 3:1–7. doi:10.1016/j.jii.2016.06.001
  • Liu YQ, Wu YX, Cao LL. 2014. The design of automatic control system for industrialized recirculating aquaculture: advanced materials research. AMR. 1046 :246–249. doi:10.4028/www.scientific.net/AMR.1046.246
  • Liu J, Yu C, Hu Z, Zhao Y, Bai Y, Xie M, Luo J. 2020. Accurate prediction scheme of water quality in smart mariculture with deep Bi-S-SRU learning Network. IEEE Access. 8:24784–24798. doi:10.1109/ACCESS.2020.2971253
  • Li X, Li Y. 2019. Preparation and modification of biomass carbon and research of the adsorption of copper. In: IOP conference series: earth and environmental science. IOP Publishing, p. 52034. doi:10.1088/1755-1315/300/5/052034
  • Lopes BDM, Silva LCB, Blanquet IM, Georgieva P, Marques CAF. 2021. Prediction of fish mortality based on a probabilistic anomaly detection approach for recirculating aquaculture system facilities. Rev Sci Instrum. 92. doi:10.1063/5.0045047
  • Louis L. 2016. Working principle of arduino and using it as a tool for study and research. IJCACS. 1(2):21–29. doi:10.5121/ijcacs.2016.1203
  • Mallya YJ. 2007. The effects of dissolved oxygen on fish growth in aquaculture. United Nations Univ. Fish. Train. Program. Final Proj.
  • Martin H. 2019. Aquaculture 4.0: applying industry strategy to fisheries management [WWW Document]. Innov. News Netw.
  • McPherson R, Irvine J. 2020. Using smartphones to enable low-cost secure consumer IoT devices. IEEE Access. 8:28607–28613. doi:10.1109/ACCESS.2020.2968627
  • Meade JW. 1985. Allowable ammonia for fish culture. Progress Fish Culturist. 47(3):135–145. doi:10.1577/1548-8640(1985)47<135:AAFFC>2.0.CO;2
  • Miles RD, Chapman FA. 2007. The concept of ideal protein in formulation of aquaculture feeds. EDIS. 2007(11) doi:10.32473/edis-fa144-2007
  • Moparthi NR, Mukesh C, Sagar PV. 2018. Water quality monitoring system using IoT. In: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). IEEE, p. 1–5. doi:10.1109/AEEICB.2018.8480963
  • Mota VC, Hop J, Sampaio LA, Heinsbroek LTN, Verdegem MCJ, Eding EH, Verreth JAJ. 2018. The effect of low pH on physiology, stress status and growth performance of turbot (Psetta maxima L.) cultured in recirculating aquaculture systems. Aquac Res. 49(10):3456–3467. doi:10.1111/are.13812
  • Motlagh NH, Mohammadrezaei M, Hunt J, Zakeri B. 2020. Internet of things (IoT) and the energy sector. Energies. 13(2):494. doi:10.3390/en13020494
  • Najah Ahmed A, Binti Othman F, Abdulmohsin Afan H, Khaleel Ibrahim R, Ming Fai C, Shabbir Hossain M, Ehteram M, Elshafie A. 2019. Machine learning methods for better water quality prediction. J Hydrol. 578:124084. doi:10.1016/j.jhydrol.2019.124084
  • Nasirudin MA, Za’bah UN, Sidek O. 2011. Fresh water real-time monitoring system based on wireless sensor network and GSM. In: 2011 IEEE Conference on Open Systems, ICOS 2011. IEEE Computer Society, pp. 354–357. doi:10.1109/ICOS.2011.6079290
  • Navarro E, Costa N, Pereira A. 2020. A systematic review of iot solutions for smart farming. Sensors (Switzerland). 20(15):4231. doi:10.3390/s20154231
  • Ndubuisi UC, Chimezie AJ, Chinedu UC, Chikwem IC, Alexander U. 2015. Effect of pH on the growth performance and survival rate of Clarias gariepinus fry. Int J Res Biosci. 4:14–20.
  • O’Leary DE. 2013. Artificial intelligence and big data. IEEE Intell Syst. 28:96–99. doi:10.1109/MIS.2013.39
  • Oddsson GV. 2020. A definition of aquaculture intensity based on production functions-the aquaculture production intensity scale (APIS). Water (Switzerland). 12(3):765. doi:10.3390/w12030765
  • Parra L, Sendra S, García L, Lloret J. 2018. Design and deployment of low-cost sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. Sensors (Switzerland). 18(3):750. doi:10.3390/s18030750
  • Parra L, Sendra S, Lloret J, Rodrigues JJPC. 2017. Design and deployment of a smart system for data gathering in aquaculture tanks using wireless sensor networks. Int J Commun Syst. 30(16):e3335. doi:10.1002/dac.3335
  • Pattillo DA. 2014. Water Quality Management for Recirculating Aquaculture.
  • Piccialli F, Casolla G, Cuomo S, Giampaolo F, Di Cola VS. 2020. Decision making in IoT environment through unsupervised learning. IEEE Intell Syst. 35(1):27–35. doi:10.1109/MIS.2019.2944783
  • Popenici SAD, Kerr S. 2017. Exploring the impact of artificial intelligence on teaching and learning in higher education. Res Pract Technol Enhanc Learn. 12. doi:10.1186/S41039-017-0062-8
  • Pule M, Yahya A, Chuma J. 2017. Wireless sensor networks: a survey on monitoring water quality. J Appl Res Technol. 15(6):562–570. doi:10.1016/j.jart.2017.07.004
  • Qingling D, Yiran LIU, Lu Z, Daoliang LI. 2018. State-of-the-art review for application of big data technology in aquaculture. Nongye Jixie Xuebao/Transactions Chinese Soc. Agric. Mach. 49.
  • Rajaee T, Ebrahimi H, Nourani V. 2019. A review of the artificial intelligence methods in groundwater level modeling. J Hydrol. doi:10.1016/j.jhydrol.2018.12.037.
  • Rathi K, Somani P, Koul A, World KM-R. 2020. undefined, 2020. Applications of artificial intelligence in the game of football: the global perspective. researchgate.net. doi:10.18843/rwjasc/v11i2/03.
  • Ray PP. 2018. A survey on Internet of things architectures. J. King Saud Univ Comput Inf Sci. doi:10.1016/j.jksuci.2016.10.003.
  • Rembold U. 2020. Robot technology and applications, robot technology and applications. CRC Press. doi:10.1201/9781003066347.
  • Ridha MT, Cruz EM. 2001. Effect of biofilter media on water quality and biological performance of the Nile tilapia Oreochromis niloticus L. reared in a simple recirculating system. Aquac Eng. 24(2):157–166. doi:10.1016/S0144-8609(01)00060-7
  • Saberioon M, Gholizadeh A, Cisar P, Pautsina A, Urban J. 2017. Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev Aquacult. 9(4):369–387. doi:10.1111/raq.12143
  • Saha S, Rajib RH, Kabir S. 2018. IoT Based Automated Fish Farm Aquaculture Monitoring System. In: 2018 International Conference on Innovations in Science, Engineering and Technology, ICISET 2018. p. 201–206. doi:10.1109/ICISET.2018.8745543
  • Saiz-Rubio V, Rovira-Más F. 2020. From smart farming towards agriculture 5.0: a review on crop data management. Agronomy. 10(2):207. doi:10.3390/agronomy10020207
  • Sanchit. 2008. The Internet of Things-Introduction and Applications. Int Res J Eng Technol. 2255.
  • Schmidt W, Raymond D, Parish D, Ashton IGC, Miller PI, Campos CJA, Shutler JD. 2018. Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring. Aquac Eng. 80:28–36. doi:10.1016/j.aquaeng.2017.12.002
  • Sethi P, Sarangi SR. and, Engineering, S.S.-J. of E. and C., U. 2017. Internet of things: architectures, protocols, and applications. hindawi.com. 2017:1–25., doi:10.1155/2017/9324035
  • Sharma A, Aquaculture KD. 2019. Virtual fisheries through mobile apps: the way forward. researchgate.net 7, 1093–1099.
  • Šiljić Tomić A, Antanasijević D, Ristić M, Perić-Grujić A, Pocajt V. 2018. A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: inter- and extrapolation performance with inputs’ significance analysis. Sci Total Environ. 610-611:1038–1046. doi:10.1016/j.scitotenv.2017.08.192
  • Sterne J. 2017. Artificial intelligence for marketing: practical applications - Jim Sterne. Google Books.
  • Stevens R. 2009. Fish pond water quality: as simple as chemistry 101. Samuel Roberts Noble Found. Inc.[online] http://www.noble.org/ag/wildlife/fish-pond-water.
  • Stonebraker M, Çetintemel U. 2018. “One size fits all” an idea whose time has come and gone, in: Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker. pp. 441–462.
  • Su J, Chen J, Wen J, Xie W, Lin M. 2020. Analysis decision-making system for aquaculture water quality based on deep learning, in. J Phys Conf Ser. 1544(1):012028. doi:10.1088/1742-6596/1544/1/012028
  • Sungkanak U, Sappat A, Wisitsoraat A, Promptmas C, Tuantranont A. 2010. Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosens Bioelectron. 26(2):784–789. doi:10.1016/j.bios.2010.06.024
  • Sun M, Yang X, Xie Y. 2020. Deep learning in aquaculture: a review. J Comput. 31:294–319.
  • Su X, Sutarlie L, Loh XJ. 2020. Sensors, biosensors, and analytical technologies for aquaculture water quality. Research (Wash D C). 2020:8272705–8272715. doi:10.34133/2020/8272705
  • Tawfeeq A, … H.A.W.-I.J. 2019. IoT based Aquaculture system with Cloud analytics. ripublication.com. 14:4136–4142.
  • Terán M, Aranda J, Carrillo H, Mendez D, Parra C. 2017. IoT-based system for indoor location using bluetooth low energy. In: 2017 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, p. 1–6. doi:10.1109/ColComCon.2017.8088211
  • Tolentino LKS, De Pedro CP, Icamina JD, Navarro JBE, Salvacion LJD, Sobrevilla GCD, Villanueva AA, Amado TM, Padilla MVC, Madrigal GAM, et al. 2021. Development of an IoT-based intensive aquaculture monitoring system with automatic water correction. IJCDS. 10(1):1355–1365. doi:10.12785/ijcds/1001120
  • Tumwesigye Z, Tumwesigye W, Opio F, Kemigabo C, Mujuni B. 2022. The effect of water quality on aquaculture productivity in Ibanda District, Uganda. Aquac J. 2(1):23–36. doi:10.3390/aquacj2010003
  • Ubina NA, Cheng S-C, Chen H-Y, Chang C-C, Lan H-Y. 2021. A visual aquaculture system using a cloud-based autonomous drones. Drones. 5(4):109. doi:10.3390/drones5040109
  • Udin Harun Al-Rasyid M, Sukaridhoto S, Dzulqornain MI, Rifai A. 2020. Integration of IoT and chatbot for aquaculture with natural language processing. Telkomnika. 18(2):640–648. doi:10.12928/telkomnika.v18i2.14788
  • Ullo SL, Sinha GR. 2020. Advances in smart environment monitoring systems using iot and sensors. Sensors (Switzerland). 20(11):3113. doi:10.3390/s20113113
  • Walter A, Finger R, Huber R, Buchmann N. 2017. Smart farming is key to developing sustainable agriculture. Proc Natl Acad Sci U. S. A. 10.1073/pnas.1707462114.
  • Wang C, Li Z, Wang T, Xu X, Zhang X, Li D. 2021. Intelligent fish farm—the future of aquaculture. Aquac Int. doi:10.1007/s10499-021-00773-8.
  • Wang T, Xu X, Wang C, Li Z, Li D. 2021. From smart farming towards unmanned farms: a new mode of agricultural production. Agric. 11(2):145–126. doi:10.3390/agriculture11020145
  • Wang P, Yao J, Wang G, Hao F, Shrestha S, Xue B, Xie G, Peng Y. 2019. Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Sci Total Environ. 693. doi:10.1016/j.scitotenv.2019.07.246
  • Xinglong J, Boyd CE. 2005. Measurement of 5-day biochemical oxygen demand without sample dilution or bacterial and nutrient enhancement. Aquac Eng. 33(4):250–257. doi:10.1016/j.aquaeng.2005.02.005
  • Xu Y, Wang Z, Jiang Y, Yang Y, Wang F. 2019. Small-world network analysis on fault propagation characteristics of water networks in eco-industrial parks. Resour. Conserv. Recycl. 149:343–351. doi:10.1016/j.resconrec.2019.05.040
  • Yadav S, Bharadwaj Y, Hariharan A, Choraria A, Tendolkar A, Pai MMM. 2022. Smart Aero-Spider: an adaptive and selective smart switching aerator system, in. J Phys: Conf Ser. Ser. 2161(1):012061. doi:10.1088/1742-6596/2161/1/012061
  • Yang L, Liu Y, Yu H, Fang X, Song L, Li D, Chen Y. 2021. Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: a review. Arch Computat Methods Eng. 28(4):2785–2816. doi:10.1007/s11831-020-09486-2
  • Yang X, Zhang S, Liu J, Gao Q, Dong S, Zhou C. 2021. Deep learning for smart fish farming: applications, opportunities and challenges. Rev. Aquac. doi:10.1111/raq.12464.
  • Yang Y, Tai H, Li D, Wei Y. 2011. A wireless sink node using information fusion for water quality information collection in factory aquaculture. In: International Conference on Computer and Computing Technologies in Agriculture. Berlin: Springer, pp. 414–426.
  • Yeo SE, Binkowski FP, Morris JE. 2004. Aquaculture effluents and waste by-products characteristics. Potential Recover. Benef. Reuse.
  • Yu H, Yang L, Li D, Chen Y. 2021. A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture. Inf Process Agric. 8(1):64–74. doi:10.1016/j.inpa.2020.04.002
  • Yuan J, Xiang J, Liu D, Kang H, He T, Kim S, Lin Y, Freeman C, Ding W. 2019. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat Clim Chang. 9(4):318–322. doi:10.1038/s41558-019-0425-9
  • Yue K, Shen Y. 2021. An overview of disruptive technologies for aquaculture. Aquac Fish. 10.1016/j.aaf.2021.04.009.
  • Zheng Q, Xiong L, Mo B, Lu W, Kim S, Wang Z. 2015. Temperature and humidity sensor powered by an individual microbial fuel cell in a power management system. Sensors (Basel). 15(9):23126–23144. doi:10.3390/s150923126
  • Zhou L, Boyd C. 2015. Ammonia nitrogen management in aquaculture ponds. Aquac. Mag. Oct.
  • Zhou C, Xu D, Chen L, Zhang S, Sun C, Yang X, Wang Y. 2019. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture. 507:457–465. doi:10.1016/j.aquaculture.2019.04.056
  • Zhou C, Xu D, Lin K, Sun C, Yang X. 2018. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review. Rev Aquacult. 10(4):975–993. doi:10.1111/raq.12218
  • Zounemat-Kermani M, Seo Y, Kim S, Ghorbani MA, Samadianfard S, Naghshara S, Kim NW, Singh VP. 2019. Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida. Appl. Sci. 9(12):2534. doi:10.3390/app9122534

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.