398
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Distribution, Deposition, and Modelling of Lipid and Long-Chain Polyunsaturated Fatty Acids in Atlantic Salmon Fillets

, &

References

  • Ackman RG. 1967. The influence of lipids on fish quality. J. Food Technol. 2(2):169–181. doi:10.1111/j.1365-2621.1967.tb01339.x
  • Afseth NK, Wold JP, Segtnan VH. 2006. The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal. Chim. Acta. 572(1):85–92. doi:10.1016/j.aca.2006.05.013
  • Ando Y, Samoto H, Murayama Y. 2004. Positional distribution of DHA and EPA in triacyl-sn-glycerols (TAG) of Artemia franciscana nauplii enriched with fish oils ethyl esters and TAG. Aquaculture 233(1–4):321–335. doi:10.1016/j.aquaculture.2003.08.013
  • Bell MV, Tocher DR. 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions. In Lipids in Aquatic Ecosystems (pp. 211–236). Springer, New York, NY.
  • Bell JG, McEvoy J, Webster JL, McGhee F, Millar RM, Sargent JR. 1998. Flesh lipid and carotenoid composition of Scottish farmed Atlantic salmon (Salmo salar). J. Agric. Food. Chem. 46(1):119–127. doi:10.1021/jf970581k
  • Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. 2001. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J. Nutr. 131(5):1535–1543. doi:10.1093/jn/131.5.1535
  • Bell JG, McGhee F, Campbell PJ, Sargent JR. 2003a. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): Changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out. Aquaculture 218(1-4):515–528. doi:10.1016/S0044-8486(02)00462-3
  • Bell JG, Tocher DR, Henderson RJ, Dick JR, Crampton VO. 2003b. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J. Nutr. 133(9):2793–2801. doi:10.1093/jn/133.9.2793
  • Bell JG, Henderson RJ, Tocher DR, Sargent JR. 2004. Replacement of dietary fish oil with increasing levels of linseed oil: Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 39(3):223–232. doi:10.1007/s11745-004-1223-5
  • Bell JG, Pratoomyot J, Strachan F, Henderson RJ, Fontanillas R, Hebard A, Guy DR, Hunter D, Tocher DR. 2010. Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils. Aquaculture 306(1–4):225–232. doi:10.1016/j.aquaculture.2010.05.021
  • Bendiksen EÅ, Jobling M, Arnesen AM. 2002. Feed intake of Atlantic salmon parr Salmo salar L. in relation to temperature and feed composition. Aquacult. Res. 33(7):525–532. doi:10.1046/j.1365-2109.2002.00737.x
  • Benedito-Palos L, Bermejo-Nogales A, Karampatos AI, Ballester-Lozano GF, Navarro JC, Diez A, Bautista JM, Bell JG, Tocher DR, Obach A, et al. 2011. Modelling the predictable effects of dietary lipid sources on the fillet fatty acid composition of one-year-old gilthead sea bream (Sparus aurata L.). Food Chem. 124(2):538–544. doi:10.1016/j.foodchem.2010.06.066
  • Berg JM, Tymoczko JL, Stryer L. 2007. Biochemistry. New York: Freeman Publishers. pp 1026.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8):911–917. doi:10.1139/o59-099
  • Brown MR, Kube PD, Taylor RS, Elliott NG. 2014. Rapid compositional analysis of Atlantic salmon (Salmo salar) using visible‐near infrared reflectance spectroscopy. Aquacult. Res. 45(5):798–811. doi:10.1111/are.12021
  • Burt K, Hamoutene D, Mabrouk G, Lang C, Puestow T, Drover D, Losier R, Page F. 2012. Environmental conditions and occurrence of hypoxia within production cages of Atlantic salmon on the south coast of Newfoundland. Aquacult. Res. 43(4):607–620. doi:10.1111/j.1365-2109.2011.02867.x
  • Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 1851(4):469–484. doi:10.1016/j.bbalip.2014.08.010
  • Castro LFC, Tocher DR, Monroig O. 2016. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog. Lipid Res. 62:25–40. doi:10.1016/j.plipres.2016.01.001
  • Christie WW. 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv. Lipid Methodol. 2(69):e111.
  • Christie WW. 1998. Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids 33(4):343–353. doi:10.1007/s11745-998-0214-x
  • Dosanjh BS, Higgs DA, Higgs DA, McKenzie DJ, Randall DJ, Eales JG, Rowshandeli N, Rowshandeli M, Deacon G. 1998. Influence of dietary blends of menhaden oil and canola oil on growth, muscle lipid composition, and thyroidal status of Atlantic salmon (Salmo salar) in sea water. Fish Physiol. Biochem. 19(2):123–134. doi:10.1023/A:1007727618179
  • Dumas A, France J, Bureau D. 2010. Modelling growth and body composition in fish nutrition: Where have we been and where are we going? Aquacult. Res. 41(2):161–181. doi:10.1111/j.1365-2109.2009.02323.x
  • Einen O, Roem AJ. 1997. Dietary protein/energy ratios for Atlantic salmon in relation to fish size: Growth, feed utilization and slaughter quality. Aquacult. Nutr. 3(2):115–126. doi:10.1046/j.1365-2095.1997.00084.x
  • Einen O, Skrede G. 1998. Quality characteristics in raw and smoked fillets of Atlantic salmon, Salmo salar, fed high-energy diets. Aquacult. Nutr. 4:99–108.
  • Emery JA, Norambuena F, Trushenski J, Turchini GM. 2016. Uncoupling EPA and DHA in fish nutrition: Dietary demand is limited in Atlantic salmon and effectively met by DHA alone. Lipids 51(4):399–412. doi:10.1007/s11745-016-4136-y
  • Emery JA, Hermon K, Hamid NK, Donald JA, Turchini GM. 2013. Δ-6 desaturase substrate competition: Dietary linoleic acid (18 : 2n-6) has only trivial effects on α-linolenic acid (18 : 3n-3) bioconversion in the teleost rainbow trout. PLoS One 8(2):e57463. doi:10.1371/journal.pone.0057463
  • Ewald G, Bremle G, Karlsson A. 1998. Differences between Bligh and Dyer and Soxhlet extractions of PCBs and lipids from fat and lean fish muscle: Implications for data evaluation. Mar. Pollut. Bull. 36(3):222–230. doi:10.1016/S0025-326X(97)00176-8
  • Folch J, Lees M, Stanley GS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5
  • Folkestad A, Wold JP, Rørvik KA, Tschudi J, Haugholt KH, Kolstad K, Mørkøre T. 2008. Rapid and non-invasive measurements of fat and pigment concentrations in live and slaughtered Atlantic salmon (Salmo salar L.). Aquaculture 280(1-4):129–135. doi:10.1016/j.aquaculture.2008.04.037
  • Glencross BD. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 1(2):71–124. doi:10.1111/j.1753-5131.2009.01006.x
  • Glencross BD. 2010. Using modelling approaches to understand the implications of physiological challenges and raw material demands on aquaculture feed designs. En: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J. (Eds), Avances en Nutrición Acuícola X - Memorias del Décimo Simposio Internacional de Nutrición Acuícola, 8-10 de Noviembre, San Nicolás de los Garza, N. L., México. ISBN en trámite. Universidad Autónoma de Nuevo León, Monterrey, México, pp. 341–365.
  • Glencross BD, Hawkins WE, Curnow JG. 2003. Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow‐out on plant oil based diets. Aquacult. Nutr. 9(6):409–418. doi:10.1046/j.1365-2095.2003.00272.x
  • Glencross BD, Tocher DR, Matthew C, Bell JG. 2014a. Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 40(4):1213–1227. doi:10.1007/s10695-014-9917-8
  • Glencross BD, Baily J, Berntssen MH, Hardy R, MacKenzie S, Tocher DR. 2020. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquacult. 12(2):703–758. doi:10.1111/raq.12347
  • Grob RL, Barry EF. 2004. Theory of gas chromatography. John Wiley & Sons. 23–63.
  • Hansen TJ, Olsen RE, Stien L, Oppedal F, Torgersen T, Breck O, Remen M, Vågseth T, Fjelldal PG. 2015. Effect of water oxygen level on performance of diploid and triploid Atlantic salmon post-smolts reared at high temperature. Aquaculture 435:354–360. doi:10.1016/j.aquaculture.2014.10.017
  • Henderson RJ, Sargent JR. 1985. Chain-length specificities of mitochondrial and peroxisimal β-oxidation of fatty acids in livers of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. Part B 82(1):79–85. doi:10.1016/0305-0491(85)90131-2
  • Henderson RJ. 1996. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch. Tierernahr. 49(1):5–22. doi:10.1080/17450399609381859
  • Henderson RJ, Tocher DR. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26(4):281–347. doi:10.1016/0163-7827(87)90002-6
  • Henriques J, Dick JR, Tocher DR, Bell JG. 2014. Nutritional quality of salmon products available from major retailers in the UK: Content and composition of n-3 long-chain PUFA. Br. J. Nutr. 112(6):964–975. doi:10.1017/S0007114514001603
  • Higgs DA, Balfry SK, Oakes JD, Rowshandeli M, Skura BJ, Deacon G. 2006. Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar L.) in sea water. I: Effects on growth performance, and whole body and fillet ­proximate and lipid composition. Aquacult. Res. 37(2):180–191. doi:10.1111/j.1365-2109.2005.01420.x
  • Hillestad M, Johnsen F. 1994. High-energy/low-protein diets for Atlantic salmon: Effects on growth, nutrient retention and slaughter quality. Aquaculture 124(1-4):109–116. doi:10.1016/0044-8486(94)90366-2
  • Iverson SJ, Lang SL, Cooper MH. 2001. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36(11):1283–1287. doi:10.1007/s11745-001-0843-0
  • Jobling M. 1981. The influences of feeding on the metabolic rate of fishes: A short review. J. Fish Biol. 18(4):385–400. doi:10.1111/j.1095-8649.1981.tb03780.x
  • Jobling M. 2003. Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash‐out or dilution? Test of a dilution model and its application. Aquacult. Res. 34(13):1215–1221. doi:10.1046/j.1365-2109.2003.00965.x
  • Jobling M. 2004. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution?: Test of a simple dilution model. Aquaculture 232(1-4):551–562. doi:10.1016/j.aquaculture.2003.07.001
  • Jobling M, Bendiksen EÅ. 2003. Dietary lipids and temperature interact to influence tissue fatty acid compositions of Atlantic salmon, Salmo salar L., parr. Aquacult. Res. 34(15):1423–1441. doi:10.1111/j.1365-2109.2003.00970.x
  • Jobling M, Johansen SJS. 2003. Fat distribution in Atlantic salmon Salmo salar L. in relation to body size and feeding regime. Aquacult. Res. 34(4):311–316. doi:10.1046/j.1365-2109.2003.00820.x
  • Johnsen CA, Hagen Ø, Bendiksen EÅ. 2011. Long-term effects of high-energy, low-fishmeal feeds on growth and flesh characteristics of Atlantic salmon (Salmo salar L.). Aquaculture 312(1–4):109–116. doi:10.1016/j.aquaculture.2010.12.012
  • Johnsen CA, Hagen Ø, Solberg C, Björnsson BTH, Jönsson E, Johansen SJS, Bendiksen EÅ. 2013. Seasonal changes in muscle structure and flesh quality of 0+ and 1+ Atlantic salmon (Salmo salar L.): Impact of feeding regime and possible roles of ghrelin. Aquacult. Nutr. 19(1):15–34. doi:10.1111/j.1365-2095.2011.00927.x
  • Johnston IA, Manthri S, Bickerdike R, Dingwall A, Luijkx R, Campbell P, Nickell D, Alderson R. 2004. Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes. Aquaculture 237(1-4):281–300. doi:10.1016/j.aquaculture.2004.04.026
  • Kabeya N, Fonseca MM, Ferrier DEK, Navarro JC, Bay LK, Francis DS, Tocher DR, Castro LFC, Monroig Ó. 2018. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 4(5):eaar6849. doi:10.1126/sciadv.aar6849
  • Kaga T, Sato S, Nagasawa T, Fukuwaka MA, Nomura T, Urawa S. 2009. Rapid Estimation of Lipid Content of Immature Chum and Pink Salmon in the Ocean with a Handheld Microwave Meter North Pacific Anadromous Fish Commission, Document, 1208.
  • Karalazos V, Bendiksen EÅ, Dick JR, Bell JG. 2007. Effects of dietary protein, and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures. Aquacult. Nutr. 13(4):256–265. doi:10.1111/j.1365-2095.2007.00471.x
  • Karalazos V, Bendiksen EÅ, Dick JR, Tocher DR, Bell JG. 2011. Influence of the dietary protein: Lipid ratio and fish oil substitution on fatty acid composition and metabolism of Atlantic salmon (Salmo salar) reared at high water temperatures. Br. J. Nutr. 105(7):1012–1025. doi:10.1017/S0007114510004605
  • Katikou P, Hughes SI, Robb DHF. 2001. Lipid distribution within Atlantic salmon (Salmo salar) fillets. Aquaculture 202(1-2):89–99. doi:10.1016/S0044-8486(01)00562-2
  • Katikou P, Robb DHF. 2001. Evaluation and comparison of the CEM rapid extraction method with official standard methods for the determination of lipid content in fillets of farmed Atlantic salmon (Salmo salar). Aquaculture 194(1-2):99–105. doi:10.1016/S0044-8486(00)00500-7
  • Metochis CP, Crampton VO, Ruohonen K, El‐Mowafi A, Bell JG, Adams A, Thompson KD. 2017. Effects of marine protein‐, marine oil‐and marine‐free diets on the growth performance and innate immune responses of Atlantic salmon (Salmo salar, L.) post‐smolts. Aquacult. Res. 48(5):2495–2515. doi:10.1111/are.13087
  • Miller MR, Nichols PD, Barnes J, Davies NW, Peacock EJ, Carter CG. 2006. Regiospecificity profiles of storage and membrane lipids from the gill and muscle tissue of Atlantic salmon (Salmo salar L.) grown at elevated temperature. Lipids 41(9):865–876. doi:10.1007/s11745-006-5042-5
  • Miller MR, Puddick J, Symonds JE, Walker SP, Tian H. 2019. Application of a Fourier transform—near infrared reflectance spectroscopy method for the rapid proximate analysis of the greenshell mussel (Perna canaliculus) and king (Chinook) salmon (Oncorhynchus tshawytscha). Aquacult. Res. 50(6):1668–1677. doi:10.1111/are.14049
  • Mock TS, Francis DS, Jago MK, Glencross BD, Smullen RP, Keast RS, Turchini GM. 2019a. The impact of dietary protein: Lipid ratio on growth performance, fatty acid metabolism, product quality and waste output in Atlantic salmon (Salmo salar). Aquaculture 501:191–201. doi:10.1016/j.aquaculture.2018.11.012
  • Mock TS, Francis DS, Jago MK, Glencross BD, Smullen RP, Turchini GM. 2019b. Endogenous biosynthesis of n-3 long-chain PUFA in Atlantic salmon. Br. J. Nutr. 121(10):1108–1123.
  • Mock TS, Francis DS, Drumm DW, Versace VL, Glencross BD, Smullen RP, Jago MK, Turchini GM. 2020. A systematic review and analysis of long-term growth trials on the effect of diet on omega-3 fatty acid levels in the fillet tissue of post-smolt Atlantic salmon. Aquaculture 516:734643. doi:10.1016/j.aquaculture.2019.734643
  • Mourente G, Tocher DR. 1994. In vivo metabolism of [1-14C] linolenic acid (18: 3 (n− 3)) and [1-14C] eicosapentaenoic acid (20: 5 (n− 3)) in a marine fish: Time-course of the desaturation/elongation pathway. Biochim. Biophys. Acta. 1212(1):109–118. doi:10.1016/0005-2760(94)90195-3
  • Nichols PD, Glencross B, Petrie JR, Singh SP. 2014. Readily available sources of long-chain omega-3 oils: Is farmed Australian seafood a better source of the good oil than wild-caught seafood? Nutrients 6(3):1063–1079. doi:10.3390/nu6031063
  • Norambuena F, Rombenso A, Turchini GM. 2016. Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the ­manipulation of dietary ARA/EPA ratio. Aquaculture 450:48–57. doi:10.1016/j.aquaculture.2015.06.044
  • O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT. 2007. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J Anim Sci. 85(6):1511–1521. doi:10.2527/jas.2006-491
  • Oppedal F, Taranger GL, Hansen T. 2003. Growth performance and sexual maturation in diploid and triploid Atlantic salmon (Salmo salar L.) in seawater tanks exposed to continuous light or simulated natural photoperiod. Aquaculture 215(1-4):145–162. doi:10.1016/S0044-8486(02)00223-5
  • Østbye TKK, Berge GM, Nilsson A, Romarheim OH, Bou M, Ruyter B. 2019. The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br. J. Nutr. 122(7):755–768. doi:10.1017/S0007114519001478
  • Oxley A, Jutfelt F, Sundell K, Olsen RE. 2007. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146(1):115–123. doi:10.1016/j.cbpb.2006.09.007
  • Pratoomyot J, Bendiksen EÅ, Bell JG, Tocher DR. 2010. Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305(1-4):124–132. doi:10.1016/j.aquaculture.2010.04.019
  • Robb DHF, Kestin SC, Warriss PD, Nute GR. 2002. Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo salar). Aquaculture 205(3-4):345–358. doi:10.1016/S0044-8486(01)00710-4
  • Rosenlund G, Torstensen BE, Stubhaug I, Usman N, Sissener NH. 2016. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J. Nutr. Sci. 5(e19):1–13. doi:10.1017/jns.2016.10
  • Ruiz-Lopez N, Stubhaug I, Ipharraguerre I, Rimbach G, Menoyo D. 2015. Positional distribution of fatty acids in triacylglycerols and phospholipids from fillets of Atlantic salmon (Salmo salar) fed vegetable and fish oil blends. Mar. Drugs. 13(7):4255–4269. doi:10.3390/md13074255
  • Rye M. 1991. Prediction of carcass composition in Atlantic salmon by computerized tomography. Aquaculture 99(1-2):35–48. doi:10.1016/0044-8486(91)90286-G
  • Sales J, Glencross B. 2011. A meta‐analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquacult. Nutr. 17(2):e271–e287. doi:10.1111/j.1365-2095.2010.00761.x
  • Segtnan VH, Høy M, Lundby F, Narum B, Wold JP. 2009. Fat distribution analysis in salmon fillets using non-contact near infrared interactance imaging: A sampling and calibration strategy. J. Near Infrared Spectrosc. 17(5):247–253. doi:10.1255/jnirs.851
  • Shearer KD, Åsgård T, Andorsdöttir G, Aas GH. 1994. Whole body elemental and proximate composition of Atlantic salmon (Salmo salar) during the life cycle. J. Fish Biol. 44(5):785–797. doi:10.1111/j.1095-8649.1994.tb01255.x
  • Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP. 1995. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J. Lipid Res. 36(12):2471–2477.
  • Sprague M, Dick JR, Tocher DR. 2016. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6(1):21892–21899. doi:10.1038/srep21892
  • Sprague M, Xu G, Betancor MB, Olsen RE, Torrissen O, Glencross BD, Tocher DR. 2019. Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic: Linoleic ratio in Atlantic salmon (Salmo salar). Br. J. Nutr. 122(10):1091–1102. doi:10.1017/S0007114519001946
  • Testi S, Bonaldo A, Gatta PP, Badiani A. 2006. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem. 98(1):104–111. doi:10.1016/j.foodchem.2005.05.053
  • Thanuthong T, Francis DS, Senadheera SPSD, Jones PL, Turchini GM. 2011. LC-PUFA biosynthesis in rainbow trout is substrate limited: Use of the whole body fatty acid balance method and different 18: 3n-3/18: 2n-6 ratios. Lipids 46(12):1111–1127. doi:10.1007/s11745-011-3607-4
  • Tinoco J. 1982. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 21(1):1–45. doi:10.1016/0163-7827(82)90015-7
  • Torstensen BE, Frøyland L, Ørnsrud R, Lie Ø. 2004. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem. 87(4):567–580. doi:10.1016/j.foodchem.2004.01.009
  • Torstensen BE, Espe M, Sanden M, Stubhaug I, Waagbø R, Hemre G-I, Fontanillas R, Nordgarden U, Hevrøy EM, Olsvik P, et al. 2008. Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285(1-4):193–200. doi:10.1016/j.aquaculture.2008.08.025
  • Torstensen BE, Espe M, Stubhaug I, Lie Ø. 2011. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br. J. Nutr. 106(5):633–647. doi:10.1017/S0007114511000729
  • Tromp JJ, Jones PL, Brown MS, Donald JA, Biro PA, Afonso LO. 2018. Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon. Aquaculture 495:196–204. doi:10.1016/j.aquaculture.2018.05.042
  • Turchini GM, Francis DS, De Silva SS. 2007. A whole body, in vivo, fatty acid balance method to ­quantify PUFA metabolism (desaturation, elongation and beta‐oxidation).Lipids 42(11):1065–1071. doi:10.1007/s11745-007-3105-x
  • Vagner M, Santigosa E. 2011. Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: A review. Aquaculture 315(1-2):131–143. doi:10.1016/j.aquaculture.2010.11.031
  • Veliyulin E, van der Zwaag C, Burk W, Erikson U. 2005. In vivo determination of fat content in Atlantic salmon (Salmo salar) with a mobile NMR spectrometer. J. Sci. Food Agric. 85(8):1299–1304. doi:10.1002/jsfa.2117
  • Viegas I, Trenkner LH, Rito J, Palma M, Tavares LC, Jones JG, Glencross BD, Wade NM. 2019. Impact of dietary starch on extrahepatic tissue lipid metabolism in farmed European (Dicentrarchus labrax) and Asian seabass (Lates calcarifer). Comp. Biochem. Physiol. Part A 231:170–176. doi:10.1016/j.cbpa.2019.02.025
  • Vikeså V, Nankervis L, Hevrøy EM. 2017. Appetite, metabolism, and growth regulation in Atlantic salmon (Salmo salar L.) exposed to hypoxia at elevated seawater temperature. Aquacult. Res. 48(8):4086–4101. doi:10.1111/are.13229
  • Wade NM, Trenkner LH, Viegas I, Tavares LC, Palma M, Skiba-Cassy S, Dias K, Vachot C, Araújo BC, Bourne N, et al. 2020. Dietary starch promotes hepatic lipogenesis in barramundi (Lates calcarifer). Br. J. Nutr. 124(4):363–373. doi:10.1017/S0007114520001051
  • Wijesundera C, Ceccato C, Watkins P, Fagan P, Fraser B, Thienthong N, Perlmutter P. 2008. Docosahexaenoic acid is more stable to oxidation when located at the sn-2 position of triacylglycerol compared to sn-1 (3). J. Am. Oil Chem. Soc. 85(6):543–548. doi:10.1007/s11746-008-1224-z
  • Wold JP, Marquardt BJ, Dable BK, Robb D, Hatlen B. 2004. Rapid quantification of carotenoids and fat in Atlantic salmon (Salmo salar L.) by Raman spectroscopy and chemometrics. Appl. Spectrosc. 58(4):395–403. doi:10.1366/000370204773580220
  • Wu Z, Zhang Q, Li N, Pu Y, Wang B, Zhang T. 2017. Comparison of critical methods developed for fatty acid analysis: A review. J. Sep. Sci. 40(1):288–298. doi:10.1002/jssc.201600707
  • Xu H, Turchini GM, Francis DS, Liang M, Mock TS, Rombenso A, Ai Q. 2020. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 80:101064. doi:10.1016/j.plipres.2020.101064
  • Zhu F, Zhang H, Shao Y, He Y, Ngadi M. 2014. Mapping of fat and moisture distribution in Atlantic salmon using near-infrared hyperspectral imaging. Food Bioprocess. Technol. 7(4):1208–1214. doi:10.1007/s11947-013-1228-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.