320
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Two Tropical Marine Copepods Demonstrate Physiological Properties Needed for Mass Production

ORCID Icon

References

  • Abate TG, Nielsen R, Nielsen M, Drillet G, Jepsen PM, Hansen BW. 2015. Economic feasibility of copepod production for commercial use: results from a prototype production facility. Aquaculture 436:72–79. doi:10.1016/j.aquaculture.2014.10.012
  • Abate TG, Nielsen R, Nielsen M, Jepsen PM, Hansen BW. 2016. A Cost-Effectiveness Analysis of Live Feeds in Juvenile Turbot Scophthalmus maximus (Linnaeus, 1758) Farming: copepods versus Artemia. Aquacult Nutr.22(4):899–910. doi:10.1111/anu.12307
  • Alekseev VR, De Stasio B, Gilbert JJ, editors. 2007. Diapause in aquatic invertebrates. Monographia Biologicae 84. Dordrecht: Springer; p. 257.
  • Amparyup P, Sungkaew S, Charoensapsri W, Tapaneeyaworawong P, Chumtong P, Yocawibun P, Pantong P, Wongpanya R, Imjongjirak C, Powtongsook S. 2022. Molecular characterization of biosynthesis of polyunsaturated fatty acids during different developmental stages in the copepod Apocyclops royi. Aquacult Rep.23:101064. doi:10.1016/j.aqrep.2022.101064
  • Anufriieva EV. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin J Ocean Limnol. 33(6):1354–1361. doi:10.1007/s00343-014-4385-7
  • Baumgartner MF, Tarrant AM. 2017. The Physiology and Ecology of Diapause in Marine Copepods. Annu Rev Mar Sci. Sci 9(1):387–411. doi:10.1146/annurev-marine-010816-060505
  • Bell MV, Tocher DR. 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions In: Kainz M, Brett M, Arts M, editors. Lipids in aquatic ecosystems. New York: Springer; p. 211–236.
  • Berggreen U, Hansen B, Kiørboe T. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol. 99(3):341–352. doi:10.1007/BF02112126
  • Beyrend-Dur D, Kumar R, Ramakrishna Rao T, Souissi S, Cheng S-H, Hwang J-S. 2011. Demographic parameters of adults of Pseudodiaptomus annandalei (Copepoda:Calanoida): Temperature–salinity and generation effects. J Exp Mar Biol Ecol. 404(1/2):1–14. doi:10.1016/j.jembe.2011.04.012
  • Beyrend-Dur D, Dur G, Souissi S, Hwang J-S. 2014. Dormant eggs of a calanoid copepod from tropical brackish aquaculture ponds. Crustaceana 87(3):284–290. doi:10.1163/15685403-00003284
  • Blanda E, Drillet G, Huang C-C, Hwang J-S, Jakobsen HH, Rayner TA, Su H-M, Wu C-H, Hansen BW. 2015. Trophic interactions and productivity of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture 445:11–21. doi:10.1016/j.aquaculture.2015.04.003
  • Blanda E, Drillet G, Huang C-C, Hwang J-S, Højgaard JK, Jakobsen HH, Rayner TA, Su H-M, Hansen BW. 2017. An analysis of how to improve production of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture 479:432–441. doi:10.1016/j.aquaculture.2017.06.018
  • Brun PG, Payne M, Kiørboe T. 2017. A trait database for marine copepods. Earth Syst Sci Data. 9(1):99–113. doi:10.5194/essd-9-99-2017
  • Chainark P, Sriveerachai T, Silapajarn K. 2017. Developing high-density culture system of Pseudodiaptomus annandalei (Copepoda: Calanoida) with various microalgae concentrate. TNI J Engineering Techn. 5:1–4.
  • Chang W-B, Fang L-S. 2004. Temporal and spatial variations in the species composition, distribution, and abundance of copepods in Kaohsiung Harbor, Taiwan. Zool Stud. 43(2):454–463.
  • Chang W-B, Lei C-H. 1993. Development and energy content of a brackish water copepod, Apocyclops royi (Lindberg) reared in a laboratory. Bull Inst Zool Acad Sin. 2:62–81.
  • Chang W-B, Dahms H-U, Tseng L-C. 2010. Copepod assemblages in an embayment of Taiwan during monsoonal transitions. Zool Stud. 49(6):735–748.
  • Chen Q, Sheng J, Lin Q, Gao Y, Lv J. 2006. Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture 258(1-4):575–582. doi:10.1016/j.aquaculture.2006.04.032
  • Chen Z, Wang G, Zeng C, Wu L. 2018. Comparative study on the effects of two diatoms as diets on planktonic calanoid and benthic harpacticoid copepods. J Exp Zool. 329(3):140–148. doi:10.1002/jez.2215
  • Cheng SH, Chen H, Su M, Ho JS. 1999. Effects of temperature and salinity on the maturation in Apocyclops royi (Cyclopidae, Cyclopoida) In Book of Abstracts. The 7th International Conference on Copepoda, Curitiba, Brazil, 25–31 July 1999. Chetumal, Mexico: World Association of Copepodologists; p. 80.
  • Cheng S-H, Lee C-H, Dahms H-U, Hwang J-S. 2008. Homosexual mating in the planktonic copepod Pseudodiaptomus annandalei (Copepoda: Calanoida). J Crustacean Biol. 28(3):580–582. doi:10.1651/07-2914R.1
  • Chinnery FE, Williams JA. 2004. The influence of temperature and salinity on Acartia (Copepoda: calanoida) nauplii survival. Mar Biol. 145:733–738.
  • Ciglenečki I, Janeković I, Marguš M, Bura-Nakić E, Carić M, Ljubešić Z, Batistić M, Hrustić E, Dupčić I, Garić R. 2015. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake,Adriatic coast). Cont Shelf Res. 108:144–155. doi:10.1016/j.csr.2015.05.007
  • Deepananda KHMA, De Silva WAJP, Gajamange D. 2007. Pseudodiaptomus annandalei (Copepoda: Pseudodiaptomidae) from coastal waters of Sri Lanka. Zoos Print J. 22(11):2878–2880. doi:10.11609/JoTT.ZPJ.1699.2878-80
  • Devreker D, Souissi S, Seuront L. 2004. Development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature. J Exp Mar Biol Ecol.303(1):31–46. doi:10.1016/j.jembe.2003.11.002
  • Devreker D, Souissi S, Forget-Leray J, Francois Leboulanger F. 2007. Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Plankton Res. 29 Supplement 1:117–133.
  • Dhanker R, Kumar R, Hwang J-S. 2012. Predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) on rotifer prey: size selection, egg predation and effect of algal diet. J Exp Mar Biol Ecol. 414:44–53.
  • Dhanker R, Hwang J-S. 2013. Predation by Apocyclops royi (Cyclopoid: Copepod) on ciliates and rotifers. J Mar Sci Technol. 21 Suppl:246–251.
  • Dhanker R, Kumar R, Tseng L-C, Hwang J-S. 2013. Ciliate (Euplotes sp.) predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) and the effects of mono-algal and pluri-algal diets. Zool Stud. 52:34. http://www.zoologicalstudies.com/content/52/1/34.
  • Doan NX, Vu MTT, Pham HQ, Wisz MS, Nielsen TG, Dinh KV. 2019. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Scient Rep. 9:4550. doi:10.1038/s41598-019-40996-7.
  • Drillet G, Hansen BW, Kiørboe T. 2011. Resting egg production induced by food limitation in the calanoid copepod Acartia tonsa (Dana). Limnol Oceanogr. 56(6):2064–2070. doi:10.4319/lo.2011.56.6.2064
  • Dur G, Souissi S, Schmitt F, Cheng S-H, Hwang J-S. 2010. The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). J Plankton Res. 32(4):423–440. doi:10.1093/plankt/fbp141
  • Dur G, Souissi S, Schmitt FG, Beyrend-Dur D, Hwang J-S. 2011. Mating and mate choice in Pseudodiaptomus annandalei (Copepoda: Calanoida). J Exp Mar Biol Ecol. 402(1/2):1–11. doi:10.1016/j.jembe.2011.02.039
  • Dur G, Souissi S, Schmitt FG, Cheng S-H, Hwang S-S. 2012. Sex ratio and mating behavior in the calanoid copepod Pseudodiaptomus annandalei. Zool Stud. 51:589–597.
  • Ellegaard M, Frisch D, Clokie MRJ, Czypionka T, Godhe A, Kremp A, Letarov A, McGenity TJ, Ribeiro S, Anderson J. 2020. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Comm Biol. 3:169. doi:10.1038/s42003-020-0899-z.
  • François-Gaël M, Holzner M, Hwang J-S, Souissi S. 2012. Three dimensional observation of salinity-induced changes in the swimming behavior of the estuarine calanoid copepod Pseudodiaptomus annandalei. J Exp Mar Biol Ecol. 438:24–31.
  • Golez MSN, Takahashi T, Ishimaru T, Ohno A. 2004. Post embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankton Biol Ecol. 51:15–25.
  • Gréve HS, Jepsen PM, Hansen BW. 2020. Does resource availability influence the vital rates of the tropical copepod Apocyclops royi (Lindberg, 1940) under changing salinities? J Plankton Res. 42(4):467–478. doi:10.1093/plankt/fbaa031
  • Grønning J, Doan NX, Dinh NT, Dinh KV, Nielsen TG. 2019. Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production. J Plankton Res. 41(5):741–758. doi:10.1093/plankt/fbz053
  • Hansen BW. 2019. Copepod embryonic dormancy – ‘an egg is not just an egg. The Biol Bull. 237:145–169. doi:10.1086/705546
  • Hansen BW, Hansen PJ, Nielsen TG, Jepsen PM. 2017. Effects of elevated pH on marine copepods in mass cultivation systems – practical implications. J Plankton Res.39(6):984–993. doi:10.1093/plankt/fbx032
  • Hansen BW, Andersen CMB, Hansen PJ, Nielsen TG, Vismann B, Tiselius P. 2019. In situ and experimental evidence for effects of elevated pH on protistan and metazoan grazers. J Plankton Res. 41(3):257–271. doi:10.1093/plankt/fbz020
  • Hansen BW, Møller S. 2021. Review: A bibliometric survey of live feed for marine finfish and shrimp larval ­production. Aquacult Res. 52(11):5124–5135. doi:10.1111/are.15460
  • Hansen BW, Ciappini G, Malmendal A, Rayner TA. 2022. Can we adapt a marine cyclopoid copepod to freshwater? – First step towards a ‘universal’ live feed product for fish larvae. Aquacult Res. 53(1):178–190. doi:10.1111/are.15563
  • Harfmann J, Kurobe T, Bergamaschi B, Teh S, Hernes P. 2019. Plant detritus is selectively consumed by estuarine copepods and can augment their survival. Sci Rep. 9(1):9076. | doi:10.1038/s41598-019-45503-6.
  • He X, Yang X, Lu B, Zhang J. 2016. Maternal investment in the offspring of Pseudodiaptomus annandalei under nitrogen deficiency. J Exp Mar Biol Ecol. 485:102–111. doi:10.1016/j.jembe.2016.09.004
  • He X, Cheng F, Chen W. 2020. Effects of maternal phosphorus deficiency on reproductive allocation of the copepod Pseudodiaptomus annandalei Sewell, 1919. Hydrobiologia 847:2035–2048. doi:10.1007/s10750-020-04229-7
  • He ZH, Qin JG, Wang HQ, Wang ZY, Xia X. 1989. Studies on the saline and hypersaline zooplanktons from Jinnan and Yinchuan regions. Acta Hydrobiol Sin. 13(1):24–37. [in Chinese with English abstract].
  • Holm MW, Kiørboe T, Brun P, Licandro P, Almeda R, Hansen BW. 2018. Resting eggs in free living marine and estuarine copepods. J Plankton Res. 40(1):2–15. doi:10.1093/plankt/fbx062
  • Holm MW, Rodríguez-Torres R, Hansen BW, Almeda R. 2019. Influence of behavioral plasticity and foraging strategy on starvation tolerance by marine planktonic copepods. J Exp Mar Biol Ecol. 511:19–27. doi:10.1016/j.jembe.2018.11.002
  • Hsu P-K, Lo W-T, Shih C-T. 2008. The coupling of copepod assemblages and hydrography in a eutrophic lagoon in Taiwan: Seasonal and spatial variations. Zool Stud. 47(2):172–184.
  • Hwang J-S, Souissi S, Tseng L-C, Seuront L, Schmitt FG, Fang L-S, Peng S-H, Wu C-H, Hsiao S-H, Twan W-H, et al. 2006. A 5-year study of the influence of the northeast and southwest monsoons on copepod assemblages in the boundary coastal waters between the East China Sea and the Taiwan Strait. J Plankton Res. 28(10):943–958. doi:10.1093/plankt/fbl031
  • Hwang J-S, Kumar R, Hsieh C-W, Kuo AY, Souissi S, Hsu M-H, Wu J-T, Liu W-C, Wang C-F, Chen Q-C. 2010. Patterns of zooplankton distribution along the marine, estuarine, and riverine portions of the Danshuei ecosystem in northern Taiwan. Zool Stud. 49(3):335–352.
  • Jepsen PM, Gréve HS, Jørgensen KN, Kjaer KGW, Hansen BW. 2021. Evaluation of high-density tank cultivation of the live-feed cyclopoid copepod Apocyclops royi (Lindberg 1940). Aquaculture 533:736125. doi:10.1016/j.aquaculture.2020.736125
  • Jónasdóttir SH. 1994. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar Biol. 121:67–81.
  • Jørgensen TS, Jepsen PM, Petersen HC, Friis DS, Hansen BW. 2019. Eggs of the Copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest. BMC Ecol. 19(1):1. doi:10.1186/s12898-018-0217-5
  • Jørgensen TS, Nielsen BLH, Petersen B, Browne PD, Hansen BW, Hansen LH. 2019. The Whole Genome Sequence and mRNA Transcriptome of the Tropical Cyclopoid Copepod Apocyclops royi. G3 (Bethesda).9(5):1295–1302. 10.1534/g3.119.400085.
  • Kaviyarasan M, Santhanam P, Ananthb S, Kumara SD, Rajua P, Kandanc S. 2020. Population growth, nauplii production and post-embryonic development of Pseudodiaptomus annandalei (Sewell, 1919) in response to temperature, light intensity, pH, salinity, and diets. Indian J Geo Mar Sci. 49:1000–1009.
  • Kimmerer WJ, McKinnon AD. 1987. Zooplankton in a marine bay. II. Vertical migration to maintain horizontal distributions. Mar Ecol Prog Ser. 1:53–60. doi:10.3354/meps041053
  • Kiørboe T, Nielsen TG. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39:493–507.
  • Kleppel GS. 1993. On the diets of calanoid copepods. Mar Ecol Prog Ser. 99:183–195. doi:10.3354/meps099183
  • Kršinić F, Carić M, Viličić D, Ciglenečki I. 2000. The calanoid copepod Acartia italica Steuer, phenomenon in the small saline Lake Rogoznica (Eastern Adriatic coast). J Plankton Res. 22:1441–1464.
  • Leandro SM, Tiselius P, Queiroga H. 2006. Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions. Mar Biol. 150(1):121–129. doi:10.1007/s00227-006-0336-y
  • Lee CE. 1999. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53(5):1423–1434. doi:10.1111/j.1558-5646.1999.tb05407.x
  • Lee C-H, Dahms H-U, Cheng S-H, Souissi S, Schmitt FG, Kumar R, Hwang J-S. 2011. Mating behaviour of Pseudodiaptomus annandalei (Copepoda, Calanoida) at calm and hydrodynamically disturbed waters. Mar Biol. 158(5):1085–1094. doi:10.1007/s00227-011-1632-8
  • Lee CS, O’Bryen PJ, Marcus NH, 2005. Copepods in aquaculture. Carlton: Blackwell Publishing Asia; p. 3–254.
  • Lee KW, Park HG. 2005. Effects of temperature and salinity on productivity and growth of five copepod species. J Kor Fish Soc. 38(1):12–19. [in Korean]
  • Lee K-W, Dahms H-U, Park HG, Kang J-H. 2013. Population growth and productivity of the cyclopoid copepods Paracyclopina nana, Apocyclops royi and the harpacticoid copepod Tigriopus japonicus in mono and polyculture conditions: a laboratory study. Aquac Res. 44(5):836–840. doi:10.1111/j.1365-2109.2011.03071.x
  • Lehette P, Ting SM, Chew L-L, Chong VC. 2016. Respiration rates of the copepod Pseudodiaptomus annandalei in tropical waters: beyond the thermal optimum. J Plankton Res. 38(3):456–467. doi:10.1093/plankt/fbv119
  • Lehette P. 2017. Respiration rates in tropical copepods: evidence of cold developmental acclimation? J Crustacean Biol. 37(1):76–80. doi:10.1093/jcbiol/ruw015
  • Liao IC, Su HM, Chang EY. 2001. Techniques in finfish larviculture in Taiwan. Aquaculture 200(1/2):1–31. doi:10.1016/S0044-8486(01)00692-5
  • Low JSY, Chew LL, Ng CC, Goh HC, Lehette P, Chong VC. 2018. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum. J Thermal Biol. 74:14–22. doi:10.1016/j.jtherbio.2018.02.012
  • Matsui H, Sasaki T, Kobari T, Waqalevu V, Kikuchi K, Ishokawa M, Kotani T. 2021. DHA accumulation in the Polar Lipids of the Eurohaline Copepod Pseudodiaptomus inopinus and Its Transfer to Red Sea Bream Pagrus major Larvae. Front Mar Sci. 8:632876. doi:https://doi.org/10.3389/fmars.2021.632876.
  • Monroig Ó, Tocher DR, Navarro JC. 2013. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs. 11(10):3998–4018. − doi:10.3390/md11103998
  • Morgan CA, Cordell JR, Simenstad CA. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Mar Biol. 129(2):309–317. doi:10.1007/s002270050171
  • Muthupriaya P, Altaff K. 2009. Effects of salinity and temperature on the reproduction of the estuarine copepod Apocyclops royi (Lindberg 1940). J Exp Zool India 12:103–106.
  • Neila A-T, Néjib D-YM, Belmonte G, Lotfi A, Habib A. 2012. Impacts of very warm temperature on egg production rates of three Acartiidae (Crustacea, Copepoda) in a Northern African lagoon. J Thermal Biol.37(6):445–453. doi:10.1016/j.jtherbio.2012.03.003
  • Nielsen BLH, Gøtterup L, Jørgensen TS, Hansen BW, Hansen LH, Mortensen J, Jepsen PM. 2019. n-3 PUFA biosynthesis by the copepod Apocyclops royi documented using fatty acid profile analysis and gene expression analysis. Biol Open.8:bio038331. doi:10.1242/bio.038331
  • Nielsen BLH, Gréve HS, Rayner TA, Hansen BW. 2020. Biochemical adaptation by the tropical copepods Apocyclops royi and Pseudodiaptomus annandalei to a PUFA-poor brackish water habitat. Mar Ecol Prog Ser. Ser 655:77–89. doi:10.3354/meps13536
  • Nielsen BLH, Gréve HS, Hansen BW. 2021. Cultivation success and fatty acid composition of the tropical copepods Apocyclops royi and Pseudodiaptomus annandalei fed on monospecific diets with varying PUFA profiles. Aquac Res. 52(3):1127–1138. doi:10.1111/are.14970
  • Nielsen R, Nielsen M, Abate TG, Hansen BW, Jepsen PM, Nielsen SL, Støttrup J, Buchmann K. 2017. The importance of live-feed traps – farming marine fish species. Aquac Res. 48(6):2623–2641. doi:10.1111/are.13281
  • Nilsson B, Jepsen PM, Buchlin A, Hansen BW. 2018. Environmental stress responses of marine copepods: Evidence of experimental handling artifacts for Acartia tonsa (Dana). Front Physiol. (Aquat Physiol) 5:156. doi:10.3389/fmars.2018.00156
  • Ough K, Bayly IAE. 1989. Salinity tolerance, development rate and predation capabilities of Sulcanus conflictus Nicholls (Copepoda: calanoida). Estuar Coast Shelf Sci. 28(2):195–209. doi:10.1016/0272-7714(89)90066-8
  • Padisák J, Naselli-Flores L. 2021. Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia 848(1):157–176. doi:10.1007/s10750-020-04353-4
  • Pan Y-J, Souissi A, Souissi S, Hwang J-S. 2016. Effects of salinity on the reproductive performance of Apocyclops royi (Copepoda, Cyclopoida). J Exp Mar Biol Ecol. 475:108–113. doi:10.1016/j.jembe.2015.11.011
  • Pan Y-J, Sadovskaya I, Hwang J-S, Souissi S. 2018. Assessment of the fecundity, population growth and ­fatty acid composition of Apocyclops royi (Cyclopoida, Copepoda) fed on different microalgal diets. Aquacult Nutr. 24(3):970–978. doi:10.1111/anu.12633
  • Pan Y-J, Souissi A, Sadovskaya I, Hwang J-S, Souissi S. 2019. Egg hatching rate and fatty acid composition of Acartia bilobata (Calanoida, Copepoda) across cold storage durations. Aquac Res. 50(2):483–489. doi:10.1111/are.13916
  • Pan Y-J, Souissi A, Sadovskaya I, Hansen BW, Hwang J-S, Souissi S. 2017. Effects of cold selective breeding on the body length, fatty acid content, and productivity of the tropical copepod Apocyclops royi (Cyclopoida, Copepoda). J Plankton Res. 39(6):994–1003. doi:10.1093/plankt/fbx041
  • Ramarn T, Chong VC, Hanamura Y. 2012. Population structure and reproduction of the mysid shrimp Acanthomysis thailandica (Crustacea: Mysidae) in a tropical mangrove estuary, Malaysia. Zool Stud. 51:768–782.
  • Rayner TA, Jørgensen NOG, Blanda E, Wu C-H, Huang C-C, Mortensen J, Hwang J-S, Hansen BW. 2015. Biochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds. Aquaculture 441:25–34. doi:10.1016/j.aquaculture.2015.01.034
  • Rayner TA, Hwang J-S, Hansen BW. 2017a. Minimizing the use of fish oil enrichment in live feed by use of a self-enriching calanoid copepod Pseudodiaptomus annandalei. J Plankton Res. 39(6):1004–1011. doi:10.1093/plankt/fbx021
  • Rayner TA, Højgaard JK, Hansen BW, Hwang J-S. 2017b. Density effect on the ovigerous rate of the calanoid copepod Pseudodiaptomus annandalei (Sewell 1919): implications for aquaculture. Aquac Res. 48(8):4573–4577. doi:10.1111/are.13082
  • Shiao CM. 1988. Feeding Selectivity of a Marine Copepod Schmackeria Dubia (Kiefer, 1936) [master’s dissertation]. Taiwan: National Taiwan University. [In Chinese, referred in Su et al. 2005].
  • Støttrup JG. 2003. Production and nutritional value of copepods In: Støttrup JG, McEwoy LA, editors. Live feeds in marine aquaculture. Oxford, UK: Blackwell Science. p. 145–205.
  • Støttrup JG, Richardson K, Kirkegaard E, Pihl NJ. 1986. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture 52(2):87–96. doi:10.1016/0044-8486(86)90028-1
  • Su HM, Lei CH, Liao IC. 1988. The effect of environmental factors on the fatty acid composition of Skeletonema costatum, Chaetoceros gracilis and Tetraselmis chuii. J Fisheries Soc Taiwan 15:21–34. [In Chinese].
  • Su HM, Su MS, Liao IC. 1997. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiologia. 358(1/3):37–40. doi:10.1023/A:1003107701367
  • Su H-M, Cheng S-H, Chen T-I, Su M-S. 2005. Culture of copepods and applications to marine finfish larval rearing in Taiwan In: Lee C-S, O’Bryen PJ, Marcus NH, editors. Copepods in aquaculture. Australia: Blackwell Publishing; p 183–195.
  • Svensen C, Wexel Riser C, Cetinik I, Caric M. 2008. Vertical flux regulation and plankton composition in a simple ecological system: snapshots from the small marine Lake Rogoznica (Croatia). Acta Adriat. 49(1):3–51.
  • Tapaneeyaworawong P, Prasopwong A, Kutako M, Powtongsook S. 2019. Growth of copepod Apocyclops royi (Lindberg, 1940) fed with Tetraselmis suecica and Thalassiosira sp. in semi-continuous and continuous culture systems. Khon Kaen Agr J. 47(Suppl. 1):305–312. [in Thai].
  • Teuber L, Hagen W, Bode M, Auel H. 2019. Who is who in the tropical Atlantic? Functional traits, ecophysiological adaptations and life strategies in tropical calanoid copepods. Progr Oceanography. 171:128–135. doi:10.1016/j.pocean.2018.12.006
  • Tiselius P, Borg MA, Hansen BW, Hansen PJ, Nielsen TG, Vismann B. 2008. High reproduction, but low biomass – mortality estimates of the copepod Acartia tonsa during a Skeletonema costatum bloom. Aquat Biol. 2:93–103. doi:10.3354/ab00043
  • Toledo JD, Golez SN, Doi M, Ohno A. 1997. Food selection of early grouper, Epinephelus coioides, larvae reared by the semi-intensive method. Suisan Zoshoku, 45(3):327–337. doi: 10.11233/aquaculturesci1953.45.327
  • Tseng L-C, Kumar R, Dahms H-U, Chen Q-C, Hwang J-S. 2008. Monsoon-driven succession of copepod assemblages in coastal waters of the northwestern Taiwan Strait. Zool Stud. 47:46–60.
  • Walter TC, Ohtsuka S, Castillo LV. 2006. A new species of Pseudodiaptomus (Crustacea: Copepoda: Calanoida) from the Philippines, with a key to pseudodiaptomids from the Philippines and comments on the status of the genus Schmackeria. Proc Biol Soc Washington 119(2):202–221. doi:10.2988/0006-324X(2006)119[202:ANSOPC2.0.CO;2]
  • Wharton DA. 2007. Introduction: extreme life. In Life at the Limits: Organisms in Extreme Environments, by D.A. Wharton, Cambridge University Press, 320 pages, Cambridge, UK. ISBN-13: 978-0521039901
  • Wu C-H, Dahms H-U, Cheng S-H, Hwang J-S. 2011. Effects of food and light on naupliar swimming behavior of Apocyclops royi and Pseudodiaptomus annandalei (Crustacea, Copepoda). Hydrobiologia 666(1):167–178. doi:10.1007/s10750-011-0631-6
  • Zempléni A, Hansen BW, Kiørboe T, Ryderheim F. 2022. Resolving the paradox of the ambush feeding cyclopoid copepod Apocyclops royi being microphageous. J Plankton Res. In press.
  • Zhao W, He ZH. 1999. Biological and ecological features of inland saline waters in North Hebei, China. Int J Salt Lake Res. 8:267–285.
  • Yoshino M, Pan Y-J, Souissi S, Dur GP. 2022. An Individual-Based Model to quantify the effect of salinity on the production of Apocyclops royi (Cyclopoida, Copepoda). Front Mar Sci. 9:863244. doi:10.3389/fmars.2022.863244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.