2,825
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Critical Assessment of Microplastics in Molluscan Shellfish with Recommendations for Experimental Protocols, Animal Husbandry, Publication, and Future Research

, , , &

References

  • Abalansa S, El Mahrad B, Vondolia GK, Icely J, Newton AA. 2020. The marine plastic litter issue: a social-economic analysis. Sustainability. 12(20):8677. doi: 10.3390/su12208677
  • Abbasi S, Soltani N, Keshavarzi B, Moore F, Turner A, A, Hassanaghaei M. 2018. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere. 205:80–87. doi:10.1016/j.chemosphere.2018.04.076
  • Abidli S, Lahbib Y, El Menif NT. 2019. Microplastics in commercial molluscs from the lagoon of Bizerte (Northern Tunisia). Mar Pollut Bull. 142:243–252. doi:10.1016/j.marpolbul.2019.03.048
  • Adam V, von Wyl A, Nowack B. 2021. Probabilistic environmental risk assessment of microplastics in marine habitats. Aquat Toxicol. 230:105689. doi:10.1016/j.aquatox.2020.105689
  • Akoueson F, Sheldon LM, Danopoulos E, Morris S, Hotten J, Chapman E, Li J, Rotchell JM. 2020. A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples. Environ Pollut. 263(Pt A):114452. doi:10.1016/j.envpol.2020.114452
  • Al-Sid-Cheikh M, Rowland SJ, Stevenson K, Rouleau C, Henry TB, Thompson RC. 2018. Uptake, whole-body distribution, and depuration of nanoplastics by the ­scallop Pecten maximus at environmentally realistic concentrations. Environ Sci Technol. 52(24):14480–14486. doi:10.1021/acs.est.8b05266
  • Al Hamra J, Patria MP. 2019. Microplastic in Gonggong Snails (Laevistrombus Turturella) and Sediment of Bintan Island, Kepulauan Riau Province, Indonesia. AIP Conference Proceedings, Surakarta, Indonesia, Vol. 2202; p. 020079.
  • Alnajar N, Jha AN, Turner A. 2021. Impacts of microplastic fibres on the marine mussel, Mytilus galloprovinciallis. Chemosphere. 262:128290. doi:10.1016/j.chemosphere.2020.128290
  • Anbumani S, Kakkar P. P. 2018. Ecotoxicological effects of microplastics on biota: a review. Environ Sci Pollut Res Int. 25(15):14373–14396. doi:10.1007/s11356-018-1999-x
  • Andrade JM, Ferreiro B, López-Mahía P, Muniategui-Lorenzo S. 2020. Standardization of the minimum information for publication of infrared-related data when microplastics are characterized. Mar Pollut Bull. 154:111035. doi:10.1016/j.marpolbul.2020.111035
  • Andrady A, Neal M. 2009. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci. 364(1526):1977–1984. doi:10.1098/rstb.2008.0304
  • Andrady AL. 2003. Plastics and the environment. Hoboken, New Jersey: Wiley; 792. p.
  • Andrady AL. 2017. The plastic in microplastics: a review. Mar Pollut Bull. 119(1):12–22. doi:10.1016/j.marpolbul.2017.01.082
  • Andral B, Galgani F, Tomasino C, Bouchoucha M, Blottiere C, Scarpato A, Benedicto J, Deudero S, Calvo M, Cento A, et al. 2011. Chemical contamination baseline in the western basin of the Mediterranean Sea based on transplanted mussels. Arch Environ Contam Toxicol. 61(2):261–271. doi:10.1007/s00244-010-9599-x
  • Arakawa KY. 1963. Studies of the molluscan faeces (I). Publ Smbl. 11(2):185–208. doi:10.5134/175344
  • Arakawa KY. 1965. Studies of the molluscan faeces (II). Publ Smbl. 13(1):1–21. doi:10.5134/175396
  • Arakawa KY. 1970. Scatological studies of the Bivalvia (Mollusca). Adv Mar Biol. 8:307–436.
  • Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA. 2018. Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res. 142:426–440. doi:10.1016/j.watres.2018.05.060
  • Aretoulaki E, Ponis S, Plakas G, Agalianos K. 2020. Α systematic meta-review analysis of review papers in the marine plastic pollution literature. Mar Pollut Bull. 161:111690. doi:10.1016/j.marpolbul.2020.111690
  • Argamino CR, Janairo JIB. 2016. Qualitative assessment and management of microplastics in Asian green mussels (Perna viridis) cultured in Bacoor Bay, Cavite, Phillipines. EnvironmentAsia. 9(2):48–54.
  • Arienzo M, Ferrara L, Trifuoggi M. 2021. Research progress in transfer, accumulation and effects of microplastics in the oceans. JMSE. 9(4):433.
  • Arthur C, Baker J, Bamford H. 2009. Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris; Sept. 9–11. Silver Spring, MD, USA: NOAA Technical Memorandum NOS-OR&R-30, NOAA Marine Debris Division. 530 p.
  • ASTM. 2013. Standard guide for conducting laboratory toxicity tests with freshwater mussels E2455-06. ASTM Int. 11:6.
  • Auguste M, Lasa A, Balbi T, Pallavicini A, Vezzulli L, Canesi L. 2020. Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis. Mar Environ Res. 159:105017. doi:10.1016/j.marenvres.2020.105017
  • Avio CG, Cardelli LR, Gorbi S, Pellegrini D, Regoli F. 2017. Microplastics pollution after the removal of the Costa Concordia wreck: first evidences from a biomonitoring case study. Environ Pollut. 227:207–214. doi:10.1016/j.envpol.2017.04.066
  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d‘Errico G, Pauletto M, Bargelloni L, Regoli F. 2015a. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut. 198:211–222. doi:10.1016/j.envpol.2014.12.021
  • Avio CG, Gorbi S, Regoli F. 2015b. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res. 111:18–26. doi:10.1016/j.marenvres.2015.06.014
  • Bacon GS, MacDonald BA, Ward JE. 1998. Physiological responses of infaunal and epifaunal bivalves to variations in the concentration and quality of suspended particles: I. Feeding activity and selection. J Exp Mar Biol Ecol. 219(12):105–125. doi:10.1016/S0022-0981(97)00177-9
  • Baechler BR, Granek EF, Hunter MV, Conn KE. 2020a. Microplastic concentrations in two Oregon bivalve species: spatial, temporal, and species variability. Limnol Oceanogr Lett. 5(1):54–65. doi:10.1002/lol2.10124
  • Baechler BR, Granek EF, Mazzone SJ, Nielsen-Pincus M, Brander SM. 2020b. Microplastic exposure by razor clam recreational harvester-consumers along a sparsely populated coastline. Front Mar Sci. 7:588481. doi:10.3389/fmars.2020.588481
  • Baechler BR, Stienbarger CD, Horn DA, Joseph J, Taylor AR, Granek EF, Brander SM. 2020c. Microplastic occurrence and effects in commercially harvested North American finfish and shellfish: current knowledge and future directions. Limnol Oceanogr Lett. 5(1):113–136. doi:10.1002/lol2.10122
  • Baer A, Langdon C, Mills S, Schulz C, Hamre K. 2008. Particle size preference, gut filling and evacuation rates of the rotifer Brachionus “Cayman” using polystyrene latex beads. Aquaculture. 282(14):75–82. doi:10.1016/j.aquaculture.2008.06.020
  • Bagheri T, Gholizadeh M, Abarghouei S, Zakeri M, Hedayati A, Rabaniha M, Aghaeimoghadam A, Hafezieh M. 2020. Microplastics distribution, abundance and composition in sediment, fishes and benthic organisms of the Gorgan Bay, Caspian Sea. Chemosphere. 257:127201. doi:10.1016/j.chemosphere.2020.127201
  • Baker SM, Levinton JS, Ward JE. 2000. Particle transport in the zebra mussel, Dreissena polymorpha (Pallas). Biol Bull. 199(2):116–125. doi:10.2307/1542871
  • Barboza LGA, Vethaak AD, Lavorante BRBO, Lundebye A-K, Guilhermino L. 2018. Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull. 133:336–348. doi:10.1016/j.marpolbul.2018.05.047
  • Barkhau J, Sanchez A, Lenz M, Thiel M. 2022. Effects of microplastics (PVC, PMMA) on the mussel Semimytilus algosus differ only at high concentrations from those of natural microparticles (clay, celite). Mar Pollut Bull. 177:113414. doi:10.1016/j.marpolbul.2022.113414
  • Barnes DKA, Galgani F, Thompson RC, Barlaz M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philos Trans Royal Soc B. 1–14.
  • Barnes SJ. 2019. Understanding plastics pollution: the role of economic development and technological research. Environ Pollut. 249:812–821. doi:10.1016/j.envpol.2019.03.108
  • Barnett S, Evans R, Quintana B, Miliou A, Pietroluongo G. 2021. An environmentally friendly method for the identification of microplastics using density analysis. Environ Toxicol Chem. 40(12):3299–3305. doi:10.1002/etc.5164
  • Baroja E, Christoforou E, Lindstrom J, Spatharis S. 2021. Effects of microplastics on bivalves: are experimental settings reflecting conditions in the field? Mar Pollut Bull. 171:112696. doi:10.1016/j.marpolbul.2021.112696
  • Barrios-O’Neill D. 2021. Focus and social contagion of environmental organization advocacy on twitter. Conserv Biol. 35(1):307–315.
  • Barrows APW, Cathey SE, Petersen CW. 2018. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environ Pollut. 237:275–284. doi:10.1016/j.envpol.2018.02.062
  • Bartell SM. 2006. Biomarkers, bioindicators, and ecological risk assessment – A brief review and evaluation. Environ Bioindic. 1(1):60–73. doi:10.1080/15555270591004920
  • Bayne BL. 2017. Biology of oysters. developments in aquaculture and fisheries science, Vol. 41. Amsterdam, The Netherlands: Elsevier Scientific Publishing Company; 260. p.
  • Bayne BL, Hawkins AJS. 1992. Ecological and physiological aspects of herbivory in benthic suspension-feeding molluscs In: John DM, Hawkins SJ, Price JH, editors. Plant-animal interactions in the marine benthos. Systematics Association Special, Vol. 46. Oxford: Clarendon Press; p. 265–288.
  • Bayne BL, Hawkins AJS, Navarro E. 1987. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. J Exp Mar Biol Ecol. 111(1):1–22. doi:10.1016/0022-0981(87)90017-7
  • Bayne BL, Hawkins AJS, Navarro E. 1988. Feeding and digestion in suspension-feeding bivalve molluscs: the relevance of physiological compensations. Am Zool. 28(1):147–159. doi:10.1093/icb/28.1.147
  • Bayne BL, Hawkins AJS, Navarro E, Iglesias IP. 1989. Effects of seston concentration on feeding, digestion and growth in the mussel Mytilus edulis. Mar Ecol Prog Ser. 55:47–54. doi:10.3354/meps055047
  • Bayne BL, Iglesias JIP, Hawkins AJS, Navarro E, Heral M, Deslous-Paoli JM. 1993. Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. J Mar Biol Ass. 73(4):813–829. doi:10.1017/S0025315400034743
  • Bayne BL, Newell RC. 1983. Physiological energetics of marine molluscs In: Saleuddin ASM, Wilbur KM, editors. The mollusca. Physiology Part 1, Vol. 4. New York: Academic Press; p. 469–472.
  • Bayne BL, Widdows J, Newell REI. 1976. Physiological measurements on estuarine bivalve molluscs in the field In: Keeger BF, Ceidigh PO, Boader PJS, editors. Biology of benthic organisms. New York: Pergamon Press; p. 57–68.
  • Beers JR, Reid FMH, Stewart GL. 1980. Microplankton population structure in Southern California nearshore waters in late spring. Mar Biol. 60(23):209–226. doi:10.1007/BF00389164
  • Bendell LI, LeCadre E, Zhou W. 2020. Use of sediment dwelling bivalves to biomonitor plastic particle pollution in intertidal regions: a review and study. PLoS One. 15(5):e0232879. doi:10.1371/journal.pone.0232879
  • Beninger PG, Decottignies P. 2004. What makes diatoms attractive for suspensivores? The organic casing and associated organic molecules of Coscinodiscus perforates are quality cues for the bivalve Pecten maximus. J Plankton Res. 27(1):11–17. doi:10.1093/plankt/fbh156
  • Beninger PG, Decottignies P, Rincé Y. 2004. Localization of qualitative particle selection sites in the heterorhabdic filibranch Pecten maximus (Bivalvia: Pectinidae). Mar Ecol Prog Ser. 275:163–173. doi:10.3354/meps275163
  • Beninger PG, Dufour SC, Bourque J. 1997. Particle processing mechanisms of the eulamellibranch bivalves Spisula solidissima and Mya arenaria. Mar Ecol Prog Ser. 150:157–169. doi:10.3354/meps150157
  • Beninger PG, St-Jean S. 1997a. Particle processing on the labial palps of Mytilus edulis and Placopecten magellanicus (Mollusca: Bivalvia). Mar Ecol Prog Ser. 147:117–127. doi:10.3354/meps147117
  • Beninger PG, St-Jean S. 1997b. The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles. Mar Biol. 129(2):389–397. doi:10.1007/s002270050179
  • Beninger PG, St-Jean S, Poussart Y, Ward JE. 1993. Gill function and mucocyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Mar Ecol Prog Ser. 98:275–282. doi:10.3354/meps098275
  • Beninger PG, Valdizan A, Cognie B, Guiheneuf F, Decottignies P. 2008. Wanted: alive and not dead: functioning diatom status is a quality cue for the suspension-feeder Crassostrea gigas. J Plankton Res. 30(6):689–697. doi:10.1093/plankt/fbn031
  • Beninger PG, Veniot A, Poussart Y. 1999. Principles of pseudofeces rejection on the bivalve mantle: integration in particle processing. Mar Ecol Prog Ser. 178:259–269. doi:10.3354/meps178259
  • Beninger PG, Ward JE, MacDonald BA, Thompson RJ. 1992. Gill function and particle transport in Placopecten magellanicus (Mollusca: Bivalvia) as revealed using video endoscopy. Mar Biol. 114(2):281–288. doi:10.1007/BF00349531
  • Benitez-Polo Z, Velasco LA. 2020. Effects of suspended mineral coal dust on the energetic physiology of the Caribbean scallop Argopecten nucleus (Born, 1778). Environ Pollut. 260:114000. doi:10.1016/j.envpol.2020.114000
  • Berglund E, Fogelberg V, Nilsson PA, Hollander J. 2019. Microplastics in a freshwater mussel (Anodonta anatina) in Northern Europe. Sci Total Environ. 697:134192. doi:10.1016/j.scitotenv.2019.134192
  • Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. 2019. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Environ Sci Technol. 49(1):32–80. doi:10.1080/10643389.2018.1531688
  • Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, Brate ILNB, Schoyen M. 2017. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar Environ Res. 130:338–365. doi:10.1016/j.marenvres.2017.07.024
  • Birnstiel S, Soares-Gomes A, da Gama BAP. 2019. Depuration reduces microplastic content in wild and farmed mussels. Mar Pollut Bull. 140:241–247. doi:10.1016/j.marpolbul.2019.01.044
  • Bom FC, Sá F. 2022. Are bivalves a source of microplastics for humans? A case study in the Brazilian markets. Mar Pollut Bull. 181:113823. doi:10.1016/j.marpolbul.2022.113823
  • Bonanno G, Orlando-Bonaca M. 2018. Perspectives on using marine species as bioindicators of plastic pollutions. Mar Pollut Bull. 137:209–221. doi:10.1016/j.marpolbul.2018.10.018
  • Bonello G, Varrella P, Pane L. 2018. First evaluation of microplastic content in benthic filter-feeders of the Gulf of La Spezia (Ligurian Sea). J Aquat Food Prod Technol. 27(3):284–291. doi:10.1080/10498850.2018.1427820
  • Borja A, Elliott M. 2019. So when will we have enough papers on microplastics and ocean litter? Mar Pollut Bull. 146:312–316. doi:10.1016/j.marpolbul.2019.05.069
  • Borja A, Elliott M. 2021. From an economic crisis to a pandemic crisis: the need for accurate marine monitoring data to make informed management decisions. Adv Mar Biol. 89:79–113.
  • Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, et al. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 369(6510):1515–1518. doi:10.1126/science.aba3656
  • Bour A, Avio CG, Gorbi S, Regoli F, Hylland K. 2018a. Presence of microplastics in benthic and epibenthic organisms: influence of habitat, feeding mode and trophic level. Environ Pollut. 243(Pt B):1217–1225. doi:10.1016/j.envpol.2018.09.115
  • Bour A, Haarr A, Keiter S, Hylland K. 2018b. Environmentally relevant microplastic exposure affects sediment dwelling bivalves. Environ Pollut. 236:652–660. doi:10.1016/j.envpol.2018.02.006
  • Bouwmeester H, Hollman PCH, Peters RJB. 2015. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol. 49(15):8932–8947. doi:10.1021/acs.est.5b01090
  • Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C. 2021. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends Microbiol. 29(2):107–116. doi:10.1016/j.tim.2020.06.011
  • Brander SM, Renick VC, Foley MM, Steele C, Woo M, Lusher A, Carr S, Helm P, Box C, Cherniak S, et al. 2020. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl Spectrosc. 74(9):1099–1125. doi:10.1177/0003702820945713
  • Brandt J, Bittrich L, Fischer F, Kanaki E, Tagg A, Lenz R, Labrenz M, Brandes E, Fischer D, Eichhorn K-J. 2020. High-throughput analyses of microplastic samples using Fourier transform infrared and Raman spectrometry. Appl Spectrosc. 74(9):1185–1197. doi:10.1177/0003702820932926
  • Bråte ILN, Blazquez M, Brooks SJ, Thomas KV. 2018a. Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis). Sci Total Environ. 626:1310–1318. doi:10.1016/j.scitotenv.2018.01.141
  • Bråte ILN, Hurley R, Iversen K, Beyer J, Thomas KV, Steindal CC, Green NW, Olsen M, Lusher A. 2018b. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: a qualitative and quantitative study. Environ Pollut. 243(Pt A):383–393. doi:10.1016/j.envpol.2018.08.077
  • Bricelj VM, Bass AE, Lopez GR. 1984. Absorption and gut passage time of microalgae in a suspension feeder: an evaluation of the 51Cr:14C twin tracer technique. Mar Ecol Prog Ser. 17:57–63. doi:10.3354/meps017057
  • Bricelj VM, Malouf RE. 1984. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam Mercenaria mercenaria. Mar Biol. 84(2):155–165. doi:10.1007/BF00393000
  • Brillant MGS, MacDonald BA. 2000. Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): the role of particle size and density. J Exp Mar Biol Ecol. 253(2):211–227. doi:10.1016/s0022-0981(00)00258-6
  • Brillant MGS, MacDonald BA. 2002. Postingestive selection in the sea scallop (Placopecten magellanicus) on the basis of chemical properties of particles. Mar Biol. 141(3):457–465. doi:10.1007/s00227-002-0845-2
  • Brillant MGS, MacDonald BA. 2003. Postingestive sorting of living and heat-killed Chlorella within the sea scallop, Placopecten magellanicus (Gmelin). J Exp Mar Biol Ecol. 290(1):81–91. doi:10.1016/S0022-0981(03)00073-X
  • Bringer A, Cachot J, Dubillot E, Lalot B, Thomas H. 2021. Evidence of deleterious effects of microplastics from aquaculture materials on pediveliger larva settlement and oyster spat growth of Pacific oyster, Crassostrea gigas. Sci Total Environ. 794:148708. doi:10.1016/j.scitotenv.2021.148708
  • Bringer A, Cachot J, Dubillot E, Prunier G, Huet V, Clerandeau C, Evin L, Thomas H. 2022. Intergenerational effects of environmentally-aged microplastics on the Crassostrea gigas. Environ Pollut. 294:118600. doi:10.1016/j.envpol.2021.118600
  • Bringer A, Cachot J, Prunier G, Dubillot E, Clérandeau C, Thomas H. 2020a. Experimental ingestion of fluorescent microplastics by pacific oysters, Crassostrea gigas, and their effects on the behaviour and development at early stages. Chemosphere. 254:126793. doi:10.1016/j.chemosphere.2020.126793
  • Bringer A, Thomas H, Prunier G, Dubillot E, Bossut N, Churlaud C, Clérandeau C, Le Bihanic F, Cachot J. 2020b. High density polyethylene (HDPE) microplastics impair development and swimming activity of Pacific oyster D-larvae, Crassostrea gigas, depending on particle size. Environ Pollut. 260:113978. doi:10.1016/j.envpol.2020.113978
  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R. 2011. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol. 45(21):9175–9179. doi:10.1021/es201811s
  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol. 42(13):5026–5031. doi:10.1021/es800249a
  • Bucci K, Tulio M, Rochman CM. 2020. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol Appl. 30(2):e02044. doi:10.1002/eap.2044
  • Buchanan C, Lacouture RV, Marshall HG, Olson M, Johnson JM. 2005. Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. Estuaries. 28(1):138–159. doi:10.1007/BF02732760
  • Burger J. 2006. Bioindicators: types, development, and use in ecological assessment and research. Environ Bioindic.Bioindicators. 1(1):22–39. doi:10.1080/15555270590966483
  • Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. 2018. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol. 52(22):13279–13288. doi:10.1021/acs.est.8b03438
  • Cai M, He H, Liu M, Li S, Tang G, Wang W, Huang P, Wei G, Lin Y, Chen B, et al. 2018. Lost but can’t be neglected: huge quantities of small microplastics hide in the South China Sea. Sci Total Environ. 633:1206–1216. doi:10.1016/j.scitotenv.2018.03.197
  • Cairns JJr., Pratt JR. 1993. A history of biological monitoring using benthic macroinvertebrates. Chapter 2 In: Rosenberg DM, Resh VH, editors. Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall; p. 10–27.
  • Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. 2020. A detailed review study on potential effects of microplastics and additives of concern on human health. IJERPH. 17(4):1212. doi:10.3390/ijerph17041212
  • Canesi L, Ciacci C, Bergami E, Monopoli M, Dawson K, Papa S, Canonico B, Corsi I. 2015. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res. 111:34–40. doi:10.1016/j.marenvres.2015.06.008
  • Capolupo M, Franzellitti S, Valbonesi P, Lanzas CS, Fabbri E. 2018. Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis. Environ Pollut. 241:1038–1047. doi:10.1016/j.envpol.2018.06.035
  • Capolupo M, Gunaalan K, Booth AM, Sørensen L, Valbonesi P, Fabbri E. 2021. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. Environ Pollut. 283:117081. doi:10.1016/j.envpol.2021.117081
  • Carbery M, O'Connor W, Thavamani P. 2018. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int. 115:400–409. doi:10.1016/j.envint.2018.03.007
  • Castagna M. 2001. Aquaculture of the hard clam, Mercenaria mercenaria. Chapter 15 In: Kraeuter JN, Castagna M, editors. Developments in aquaculture and fisheries science, Elsevier, Amsterdam, The Netherlands; Vol. 31; p. 675–699.
  • Castro RO, Silva ML, Marques MRC, de Araujo FV. 2016. Evaluation of microplastics in Jurujuba Cove, Niterói, RJ, Brazil, an area of mussels farming. Mar Pollut Bull. 110(1):555–558. doi:10.1016/j.marpolbul.2016.05.037
  • Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB. 2018. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut. 237:675–684. doi:10.1016/j.envpol.2018.02.069
  • Catarino AI, Thompson R, Sanderson W, Henry TB. 2017. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ Toxicol Chem. 36(4):947–951. doi:10.1002/etc.3608
  • Chabuka BK, Kalivas JH. 2020. Application of a hybrid fusion classification process for identification of microplastics based on Fourier transform infrared spectroscopy. Appl Spectrosc. 74(9):1167–1183. doi:10.1177/0003702820923993
  • Chen F, Lao Q, Liu M, Huang P, Chen B, Zhou X, Chen P, Chen K, Song Z, Cai M. 2022. Impact of intensive mariculture activities on microplastic pollution in a typical semi-enclosed bay: Zhanjiang Bay. Mar Pollut Bull. 176:113402. doi:10.1016/j.marpolbul.2022.113402
  • Chen M, Jin M, Tao P, Wang Z, Xie W, Yu X, Wang K. 2018. Assessment of microplastics derived from mariculture in Xiangshan Bay, China. Environ Pollut. 242(Pt B):1146–1156. doi:10.1016/j.envpol.2018.07.133
  • Chinfak N, Sompongchaiyakul P, Charoenpong C, Shi H, Yeemin T, Zhang J. 2021. Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. Sci Total Environ. 781:146700. doi:10.1016/j.scitotenv.2021.146700
  • Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2019. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut. 245:1107–1116. doi:10.1016/j.envpol.2018.11.091
  • Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2021. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environ Pollut. 270:116175. doi:10.1016/j.envpol.2020.116175
  • Choi JS, Kim K, Hong SH, Park K-I, Park J-W. 2021. Impact of polyethylene terephthalate microfiber length on cellular responses in the Mediterranean mussel Mytilus galloprovincialis. Mar Environ Res. 168:105320. doi:10.1016/j.marenvres.2021.105320
  • Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR. 2013. New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull. 70(12):227–233. doi:10.1016/j.marpolbul.2013.03.009
  • Clark JR, Cole M, Lindeque PK, Fileman E, Blackford J, Lewis C, Lenton TM, Galloway TS. 2016. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life. Front Ecol Environ. 14(6):317–324. doi:10.1002/fee.1297
  • Cognie B, Barille L, Masse G, Beninger PG. 2003. Selection and processing of large suspended algae in the oyster Crassostrea gigas. Mar Ecol Prog Ser. 250:145–152. doi:10.3354/meps250145
  • Cognie B, Barillé L, Rincé Y, Barille L, Rince Y. 2001. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries. 24(1):126–131. doi:10.2307/1352819
  • Cole M, Galloway TS. 2015. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ Sci Technol. 49(24):14625–14632. doi:10.1021/acs.est.5b04099
  • Cole M, Liddle C, Consolandi G, Drago C, Hird C, Lindeque PK, Galloway TS. 2020. Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.). Mar Pollut Bull. 160:111552. doi:10.1016/j.marpolbul.2020.111552
  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS. 2013. Microplastic ingestion by zooplankton. Environ Sci Technol. 47(12):6646–6655. doi:10.1021/es400663f
  • Cole M, Lindeque P, Halsband C, Galloway TS. 2011. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 62(12):2588–2597. doi:10.1016/j.marpolbul.2011.09.025
  • Cole M, Webb H, Lindeque P, Fileman ES, Halsband C, Galloway TS. 2014. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 4:4528.
  • Collins HI. 2022. Examining the effects of nylon microfibers on the gut microbiome and gut tissues of the blue mussel, Mytilus edulis [Unpublished master’s thesis]. University of Connecticut, Connecticut, USA.
  • Comnea-Stancu IR, Wieland K, Ramer G, Schwaighofer A, Lendl B. 2017. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl Spectrosc. 71(5):939–950. doi:10.1177/0003702816660725
  • Connors KA, Dyer SD, Belanger SE. 2017. Advancing the quality of environmental microplastic research. Environ Toxicol Chem. 36(7):1697–1703. doi:10.1002/etc.3829
  • Conover RJ. 1966. Assimilation of organic matter by zooplankton. Limnol Oceanogr. 11(3):338–345. doi:10.4319/lo.1966.11.3.0338
  • Coughlan J. 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biol. 2(4):356–358. doi:10.1007/BF00355716
  • Courtene-Jones W, Quinn B, Murphy F, Gary SF, Narayanaswamy BE. 2017. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal Methods. 9(9):1437–1445. doi:10.1039/C6AY02343F
  • Covernton GA, Collicutt B, Gurney-Smith HJ, Pearce CM, Dower JF, Ross PS, Dudas SE. 2019. Microplastics in bivalves and their habitat in relation to shellfish aquaculture proximity in coastal British Columbia, Canada. Aquacult Environ Interact. 11:357–374. doi:10.3354/aei00316
  • Covernton GA, Dietterle M, Pearce CM, Gurney-Smith HJ, Dower JF, Dudas SE. 2022. Depuration of anthropogenic particles by Pacific oysters (Crassostrea gigas): feasibility and efficacy. Mar Pollut Bull. 181:113886. doi:10.1016/j.marpolbul.2022.113886
  • Cowger W, Booth AM, Hamilton BM, Thaysen C, Primpke S, Munno K, Lusher AL, Dehaut A, Vaz VP, Liboiron M, et al. 2020a. Reporting guidelines to increase the reproducibility and comparability of research on microplastics. Appl Spectrosc. 74(9):1066–1077. doi:10.1177/0003702820930292
  • Cowger W, Gray A, Christiansen SH, DeFrond H, Deshpande AD, Hemabessiere L, Lee E, Mill L, Munno K, Ossmann BE, et al. 2020b. Critical review of processing and classification techniques for images and spectra in ­microplastic research. Appl Spectrosc. 74(9):989–1010. doi:10.1177/0003702820929064
  • Cowger W, Steinmetz Z, Gray A, Munno K, Lynch J, Hapich H, Primpke S, De Frond H, Rochman C, Herodotou O. 2021. Microplastic spectral classification needs an open source community: open specy to the rescue! Anal Chem. 93(21):7543–7548. doi:10.1021/acs.analchem.1c00123
  • Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. 2019. Human consumption of microplastics. Environ Sci Technol. 53(12):7068–7074. doi:10.1021/acs.est.9b01517
  • Cozzolino L, de los Santos CB, Zardi GI, Repetto L, Nicastro KR. 2021. Microplastics in commercial bivalves harvested from intertidal seagrasses and sandbanks in the Ria Formosa lagoon, Portugal. Mar Freshwater Res. 72(7):1092–1099. doi:10.1071/MF20202
  • Craig CA, Fox DW, Zhai L, Walters LJ. 2022. In-situ microplastic egestion efficiency of the eastern oyster Crassostrea virginica. Mar Pollut Bull. 178:113653. doi:10.1016/j.marpolbul.2022.113653
  • Cranford PJ, Emerson CW, Hargrave BT, Milligan TG. 1998. In situ feeding and absorption responses of sea scallops Placopecten magellanicus (Gmelin) to storm induced changes in the quantity and composition of the seston. J Exp Mar Biol Ecol. 219(12):45–70. doi:10.1016/S0022-0981(97)00174-3
  • Cranford PJ, Gordon DC. 1992. The influence of dilute clay suspensions on sea scallop (Placopecten magellanicus) feeding activity and tissue growth. Neth J Sea Res. 30:107–120. doi:10.1016/0077-7579(92)90050-O
  • Cranford PJ, Ward JE, Shumway SE. 2011. Bivalve filter feeding: variability and limits of the aquaculture biofilter In: Shumway SE, editor. Shellfish aquaculture and the environment. 1st ed. West Sussex, United Kingdom: Wiley; p. 81–124.
  • Cucci TL, Shumway SE, Newell RC, Selvin R, Guillard RL, Yentsch CM. 1985. Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar Ecol Prog Ser. 24:201–204. doi:10.3354/meps024201
  • Cui T, Shi W, Wang H, Lihui AN. 2022. Standardizing microplastics used for establishing recovery efficiency when assessing microplastics in environmental samples. Sci Total Environ. 827:154323. doi:10.1016/j.scitotenv.2022.154323
  • Dame RF. 1993. The role of bivalve filter feeder material fluxes in estuarine ecosystems In: Dame RF, editor. Bivalve filter feeders in estuarine and coastal ecosystem processes. NATO ASI Series, Vol. G 33. Berlin: Springer- Verlag; p. 245–269.
  • Daniel DB, Ashraf PM, Thomas SN, Thomson KT. 2021. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere. 264(Pt 2):128554. doi:10.1016/j.chemosphere.2020.128554
  • Danopoulos E, Jenner LC, Twiddy M, Rotchell JM. 2020a. Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis. Environ Health Perspect. 128(12):126002. doi:10.1289/EHP7171
  • Danopoulos E, Jenner L, Twiddy M, Rotchell JM. 2020b. Microplastic contamination of salt intended for human consumption: a systematic review and meta-analysis. SN Appl Sci. 2(12):1950. doi:10.1007/s42452-020-03749-0
  • Danopoulos E, Twiddy M, Rotchell JM. 2020c. Microplastic contamination in drinking water: a systematic review. PLoS One. 15(7):e0236838. doi:10.1371/journal.pone.0236838
  • Danopoulos E, Twiddy M, West R, Rotchell JM. 2022. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 427:127861. doi:10.1016/j.jhazmat.2021.127861
  • Davids C. 1964. The influence of suspension of micro-organisms of different concentrations on the pumping and retention of food by the mussel (Mytilus edulis). Neth J Sea Res. 2(2):233–249. doi:10.1016/0077-7579(64)90011-0
  • Davidson K, Dudas SE. 2016. Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch Environ Contam Toxicol. 71(2):147–156. doi:10.1007/s00244-016-0286-4
  • Dawson AL, Santana MFM, Miller ME, Kroon FJ. 2021. Relevance and reliability of evidence for microplastic contamination in seafood: a critical review using Australian consumption patterns as a case study. Environ Pollut. 276:116684. doi:10.1016/j.envpol.2021.116684
  • De Frond H, Rubinovitz R, Rochman CM. 2021. μATR-FTIR spectral libraries of plastic particles (FLOPP and FLOPP-e) for the analysis of microplastics. Anal Chem. 93(48):15878–15885. doi:10.1021/acs.analchem.1c02549
  • de Guzman MK, Andjelkovic M, Jovanovic V, Jung J, Kim J, Dailey LA, Rajkovic A, De Meulenaer B, Velickovic TC. 2022. Comparative profiling and exposure assessment of microplastics in differently sized Manila clams from South Korea by μFTIR and Nile Red staining. Mar Pollut Bull. 181:113846. doi:10.1016/j.marpolbul.2022.113846
  • De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, Robbens J. 2014. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull. 85(1):146–155. doi:10.1016/j.marpolbul.2014.06.006
  • De-la-Torre G, Mendoza-Castilla L, Pilar R. 2019. Microplastic contamination in market bivalve Argopecten purpuratus from Lima, Peru. Manglar. 16(2):85–89. doi:10.17268/manglar.2019.012
  • De-la-Torre GE. 2020. Microplastics: an emerging threat to food security and human health. J Food Sci Technol. 57(5):1601–1608. doi:10.1007/s13197-019-04138-1
  • De-la-Torre GE, Apaza-Vargas DM, Santillan L. 2020. Microplastic ingestion and feeding ecology in three intertidal mollusc species from Lima, Peru. RBMO. 55(2):167–171. doi:10.22370/rbmo.2020.55.2.2502
  • de Villiers CJ, Hodgson AN. 1993. The filtration and feeding physiology of the infaunal estuarine bivalve Solen cylindraceus. J Exp Mar Biol Ecol. 167(1):127–142. doi:10.1016/0022-0981(93)90188-T
  • Decho AW, Luoma SN. 1991. Time-courses in the retention of food material in the bivalves Potamocorbula amurensis and Macoma balthica: significance to the absorption of carbon and chromium. Mar Ecol Prog Ser. 78:303–314. doi:10.3354/meps078303
  • Defossez J-M, Hawkins AJS. 1997. Selective feeding in shellfish: size-dependent rejection of large particles within pseudofaeces from Mytilus edulis, Ruditapes philippinarum and Tapes decussatus. Mar Biol. 129(1):139–147. doi:10.1007/s002270050154
  • Dehaut A, Cassone AL, Frere L, Hermabessiere L, Himber C, Rinnert E, Riviere G, Lambert C, Soudant P, Huvet A, et al. 2016. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut. 215:223–233. doi:10.1016/j.envpol.2016.05.018
  • Dehaut A, Hermabessiere L, Duflos G. 2019. Current frontiers and recommendations for the study of microplastics in seafood. Trac, Trends Anal Chem.116:346–359. doi:10.1016/j.trac.2018.11.011
  • Dehaut A, Hermabessiere L, Duflos G. 2020. Microplastics detection using pyrolysis-GC/MS-based methods In: Rocha-Santos T, Costa M, Mouneyrac C, editors. Handbook of microplastics in the environment. Cham: Springer; 35. p
  • Dekiff JH, Remy D, Klasmeier J, Fries E. 2014. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 186:248–256. doi:10.1016/j.envpol.2013.11.019
  • Dellisanti W, Leung MML, Lam KW-K, Wang Y, Hu M, Lo HS, Fang JKH. 2023. A short review on the recent method development for extraction and identification of microplastics in mussels and fish, two major groups of seafood. Mar Pollut Bull. 186:114221. doi:10.1016/j.marpolbul.2022.114221
  • Dennett MR, Mathot S, Caron DA, Smith WOJr., Lonsdale DJ. 2001. Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea. Deep-Sea Res II. 48(1920):4019–4037. doi:10.1016/S0967-0645(01)00079-0
  • Desforges JP, Galbraith M, Dangerfield N, Ross PS. 2014. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull. 79(12):94–99. doi:10.1016/j.marpolbul.2013.12.035
  • Détrée C, Gallardo-Escárate C. 2017. Polyethylene microbeads induce transcriptional responses with tissue-dependent patterns in the mussel Mytilus galloprovincialis. J Molluscan Stud. 83(2):220–225. doi:10.1093/mollus/eyx005
  • Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frère L, Robbens D, Vethaak AD. 2015. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull. 98(12):179–187. doi:10.1016/j.marpolbul.2015.06.051
  • Digka N, Tsangaris C, Kaberi H, Adamopoulou A, Zeri C. 2018a. Microplastic abundance and polymer types in a mediterranean environment. In: Cocca M, Di Pace E, Errico M, Gentile G, Montarsolo A, Mossotti R, editors. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Cham: Springer International Publishing; p. 17–24.
  • Digka N, Tsangaris C, Torre M, Anastasopoulou A, Zeri C. 2018b. Microplastics in mussels and fish from the Northern Ionian Sea. Mar Pollut Bull. 135:30–40. doi:10.1016/j.marpolbul.2018.06.063
  • Ding JF, Li J-X, Sun C-J, He C-F, Jiang F-H, Gao F-L, Zheng L. 2018. Separation and identification of microplastics in digestive system of bivalves. Chin J Anal Chem. 46(5):690–697. doi:10.1016/S1872-2040(18)61086-2
  • Ding JF, Li J, Sun CJ, Jiang F, He C, Zhang M, Ju P, Ding NX. 2020. An examination of the occurrence and potential risks of microplastics across various shellfish. Sci Total Environ. 739:139887. doi:10.1016/j.scitotenv.2020.139887
  • Ding JF, Sun C, He C, Li J, Ju P, Li F. 2021. Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Sci Total Environ. 782:146830. doi:10.1016/j.scitotenv.2021.146830
  • Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. 2020. A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. Sci Total Environ. 730:139164.
  • Do VM, Dang TT, Le XTT, Nguyen DT, Phung TV, Vu DN, Pham HV. 2022. Abundance of microplastics in cultured oysters (Crassostrea gigas) from Danang Bay of Vietnam. Mar Pollut Bull. 180:113800. doi:10.1016/j.marpolbul.2022.113800
  • Doering PH, and Oviatt CA. 1986. Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms. Mar Ecol Prog Ser. 31:265–275. doi:10.3354/meps031265
  • Donnelly CA, Boyd I, Campbell P, Craig C, Vallance P, Walport M, Whitty CJM, Woods E, Wormald C. 2018. Four principles to make evidence synthesis more useful for policy. Nature. 558(7710):361–364. doi:10.1038/d41586-018-05414-4
  • Dowarah K, Patchaiyappan A, Thirunavukkarasu C, Jayakumar S, Devipriya SP. 2020. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Mar Pollut Bull. 153:110982. doi:10.1016/j.marpolbul.2020.110982
  • Doyle D, Gammell M, Frias J, Griffin G, Nash R. 2019. Low levels of microplastics recorded from the common periwinkle, Littorina littorea on the west coast of Ireland. Mar Pollut Bull. 149:110645. doi:10.1016/j.marpolbul.2019.110645
  • Doyle D, Sundh H, Almroth BC. 2022. Microplastic exposure in aquatic invertebrates can cause significant negative effects compared to natural particles - A meta-analysis. Environ Pollut. 315:120434. doi:10.1016/j.envpol.2022.120434
  • Doyle JJ, Ward JE, Mason R. 2015. An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Mar Environ Res. 110:45–52. doi:10.1016/j.marenvres.2015.07.020
  • Doyle MJ, Watson W, Bowlin NM, Sheavly SB. 2011. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific Ocean. Mar Environ Res. 71(1):41–52. doi:10.1016/j.marenvres.2010.10.001
  • Duffus JH, Nordberg M, Templeton DM. 2007. Glossary of Terms used in Toxicology. 2nd Edition (IUPAC Recommendations 2007). Pure Appl Chem. 79(7):1153–1344. doi:10.1351/pac200779071153
  • Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, Senz R. 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 85:451–457. doi:10.1016/j.watres.2015.09.002
  • Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. 2017. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 174:572–584. doi:10.1016/j.chemosphere.2017.02.010
  • Eerkes-Medrano D, Thompson RC, Aldridge DC. 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75:63–82. doi:10.1016/j.watres.2015.02.012
  • Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, Braun U. 2017. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 231(Pt 2):1256–1264. doi:10.1016/j.envpol.2017.08.074
  • Enders K, Lenz R, Beer S, Stedmon CA. 2017. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES J Mar Sci. 74(1):326–331. doi:10.1093/icesjms/fsw173
  • Enders K, Lenz R, Stedmon CA, Nielsen TG. 2015. Abundance, size and polymer composition of marine microplastics ≥ 10 µm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 100(1):70–81. doi:10.1016/j.marpolbul.2015.09.027
  • Engler RE. 2012. The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol. 46(22):12302–12315. doi:10.1021/es3027105
  • Epifanio CE, Mootz CA. 1976. Growth of oysters in a recirculating mariculture system. Proceedings of the National Shellfisheries Association, Memorial Press Group, Plymouth, Massachusetts, Vol. 65. p. 32–37.
  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J. 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 9(12):e111913. doi:10.1371/journal.pone.0111913
  • European Food Safety Authority (EFSA). 2010. Application of systematic review methodology to food and feed safety assessments to support decision making. EFS J. 8(6):1637–1690.
  • European Food Safety Authority (EFSA). 2016. Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14(6):4501–4530.
  • Everaert G, Van Cauwenberghe L, De Rijcke M, Koelmans AA, Mees J, Vandegehuchte M, Janssen CR. 2018. Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ Pollut. 242(Pt B):1930–1938. doi:10.1016/j.envpol.2018.07.069
  • Fabra M, Williams L, Watts JEM, Hale MS, Couceiro F, Preston J. 2021. The plastic Trojan horse: biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci Total Environ. 797:149217. doi:10.1016/j.scitotenv.2021.149217
  • Fang C, Zheng R, Chen H, Hong F, Lin L, Lin H, Guo H, Bailey C, Segner H, Mu J, et al. 2019. Comparison of microplastic contamination in fish and bivalves from two major cities in Fujian province, China and the implications for human health. Aquaculture. 512:734322. doi:10.1016/j.aquaculture.2019.734322
  • FAO. 2022. The State of World Fisheries and Aquaculture 2022. Toward Blue Transformation. Rome: FAO; p. 266.
  • Farrell P, Nelson K. 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut. 177:1–3. doi:10.1016/j.envpol.2013.01.046
  • Farrington JW, Tripp BW, Tanabe S, Subramanian A, Sericano JL, Wade TL, Knap AH. 2016. Edward D. Goldberg’s proposal of ‘the mussel watch’: reflections after 40 years. Mar Pollut Bull. 110(1):501–510. doi:10.1016/j.marpolbul.2016.05.074
  • Fernández B, Albentosa M. 2019a. Insights into the uptake, elimination and accumulation of microplastics in mussel. Environ Pollut. 249:321–329. doi:10.1016/j.envpol.2019.03.037
  • Fernández B, Albentosa M. 2019b. Dynamic of small polyethylene microplastics (≤10 μm) in mussel’s tissues. Mar Pollut Bull. 146:493–501. doi:10.1016/j.marpolbul.2019.06.021
  • Fernández Severini MDF, Villagran DM, Buzzi NS, Sartor GC. 2019. Microplastics in oysters (Crassostrea gigas) and water at the Bahía Blanca Estuary (Southwestern Atlantic): an emerging issue of global concern. Reg Stud Mar Sci. 32:100829. doi:10.1016/j.rsma.2019.100829
  • Field I. 1911. The food value of mussels. Bull Bureau Fish. XXIX:87–126.
  • Field I. 1924. Biology and economic value of the sea mussel, Mytilus edulis. Bull Bureau Fish. XXXVIII:127–259.
  • Filgueira R, Labarta U, Fernández-Reiriz MJ. 2006. Flow-through chamber method for clearance rate measurements in bivalves: design and validation of individual chambers and mesocosm. Limnol Oceanogr Methods. 4(8):284–292. doi:10.4319/lom.2006.4.284
  • Fischer M, Scholz-Böttcher BM. 2017. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography–mass spectrometry. Environ Sci Technol. 51(9):5052–5060. doi:10.1021/acs.est.6b06362
  • Fitri S, Patria MP. 2019. Microplastic contamination on Cerithidea Obtusa (Lamarck 1822) in Pangkal Babu Mangrove Forest Area, Tanjung Jabung Barat District, Jambi. AIP Conference Proceedings, Depok, Indonesia, Vol. 2168. p. 020075.
  • Foekema EM, De Gruijter C, Mergia MT, van Franeker JA, Murk AJ, Koelmans AA. 2013. Plastic in North Sea fish. Environ Sci Technol. 47(15):8818–8824. doi:10.1021/es400931b
  • Foley CJ, Feiner ZS, Malinich TD, Höök TO. 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ. 631632:550–559. doi:10.1016/j.scitotenv.2018.03.046
  • Foster-Smith RL. 1975. The effect of concentration of suspension and inert material on the assimilation of algae by three bivalves. J Mar Biol Ass. 55(2):411–418. doi:10.1017/S0025315400016027
  • Fotopoulou KN, Karapanagioti HK. 2012. Surface properties of beached plastic pellets. Mar Environ Res. 81:70–77. doi:10.1016/j.marenvres.2012.08.010
  • Fox R. 2001. Invertebrate anatomy online, Corbicula fluminea, Asian clam. Lander University. [accessed 2021 Dec 17]. https://lanwebs.lander.edu/faculty/rsfox/invertebrates/corbicula.html.
  • Fraissinet S, Pennetta A, Rossi S, De Benedetto GE, Malitesta C. 2021. Optimization of a new multi-reagent procedure for quantitative mussel digestion in microplastic analysis. Mar Pollut Bull. 173(Pt A):112931. doi:10.1016/j.marpolbul.2021.112931
  • Franzellitti S, Capolupo M, Wathsala RHGR, Valbonesi P, Fabbri E. 2019. The multixenobiotic resistance system as a possible protective response triggered by microplastic ingestion in Mediterranean mussels (Mytilus galloprovincialis): larvae and adult stages. Comp Biochem Physiol C Toxicol Pharmacol. 219:50–58. doi:10.1016/j.cbpc.2019.02.005
  • Frias JPGL, Otero V, Sobral P. 2014. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res. 95:89–95. doi:10.1016/j.marenvres.2014.01.001
  • Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. 2013. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 15(10):1949–1956. doi:10.1039/c3em00214d
  • Gabisa EW, and Gheewala SH. 2022. Microplastics in ASEAN region countries: a review on current status and perspectives. Mar Pollut Bull. 184:114118. doi:10.1016/j.marpolbul.2022.114118
  • Gagnon C, Fisher NS. 1997. The bioavailability of sediment-bound Cd, Co, and Ag to the mussel Mytilus edulis. Can J Fish Aquat Sci. 54(1):147–156. doi:10.1139/f96-256
  • Gago J, Carretero O, Filgueiras AV, Vinas L. 2018. Synthetic microfibers in the marine environment: a review on their occurrence in seawater and sediments. Mar Pollut Bull. 127:365–376. doi:10.1016/j.marpolbul.2017.11.070
  • Gago J, Galgani F, Maes T, Thompson RC. 2016. Microplastics in seawater: recommendations from the marine strategy framework directive implementation process. Front Mar Sci. 3:219. doi:10.3389/fmars.2016.00219
  • Gall SC, Thompson RC. 2015. The impact of debris on marine life. Mar Pollut Bull. 92(12):170–179. doi:10.1016/j.marpolbul.2014.12.041
  • Galloway TS. 2015. Micro- and nano-plastics and human health. Chapter 13 In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Springer International Publishing, Cham Heidelberg, New York Dordrecht London; p. 343–366.
  • Galtsoff PS. 1964. The American oyster Crassostrea virginica (Gmelin). Fish Bull. 64:1–480.
  • Gandara e Silva PP, Nobre CR, Resaffe P, Pereira CDS, Gusmao F. 2016. Leachate from microplastics impairs larval development in brown mussels. Water Res. 106:364–370. doi:10.1016/j.watres.2016.10.016
  • Gardon T, Reisser C, Soyez C, Quillien V, Le Moullac G. 2018. Microplastics affect energy balance and gametogenesis in the pearl oyster Pinctada margaritifera. Environ Sci Technol. 52(9):5277–5286. doi:10.1021/acs.est.8b00168
  • Garrido Gamarro GE, Costanzo V. 2022. Microplastics in food commodities – A food safety review on human exposure through dietary sources. Food Safety and Quality Series No. 18. Rome: FAO; 124 p.
  • Garrido MV, Chaparro OR, Thompson RJ, Garrido O, Navarro JM. 2012. Particle sorting and formation and elimination of pseudofeces in the bivalves Mulina edulis (siphonate) and Mytilus chilensis (asiphonate). Mar Biol. 159(5):987–1000. doi:10.1007/s00227-012-1879-8
  • Gaspar TR, Chi RJ, Parrow MW, Ringwood AH. 2018. Cellular bioreactivity of micro- and nano-plastic particles in oysters. Front Mar Sci. 5:345. doi:10.3389/fmars.2018.00345
  • Gedik K, Eryaşar AR. 2020. Microplastic pollution profile of Mediterranean mussels (Mytilus galloprovincialis) collected along the Turkish coasts. Chemosphere. 260:127570. doi:10.1016/j.chemosphere.2020.127570
  • George SG, Pirie BJS, Coombs TL. 1976. The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (L.) and its distribution in the tissues. J Exp Mar Biol Ecol. 23(1):71–84. doi:10.1016/0022-0981(76)90086-1
  • Gerritsen J, Porter KG. 1982. The role of surface chemistry in filter feeding by zooplankton. Science. 216(4551):1225–1227. doi:10.1126/science.216.4551.1225
  • GESAMP. 2015a. Sources fate and effects of microplastics in the marine environment: a global assessment. In: Kershaw PJ, editor. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP No. 90: 96 p
  • GESAMP. 2015b. Sources fate and effects of microplastics in the marine environment: a global assessment, Part 2. In: Kershaw PJ, editor. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP No. 93: 220 p
  • GESAMP. 2019. Guidelines for the monitoring and assessment of plastic litter in the ocean. In: Kershaw PJ, Turra A, Galgani F, editors. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP No. 99: 130 p
  • Gewert B, Ogonowski M, Barth A, MacLeod M. 2017. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea. Mar Pollut Bull. 120(12):292–302. doi:10.1016/j.marpolbul.2017.04.062
  • Geyer R, Jambeck JR, Lavender Law K. 2017. Production, use, and fate of all plastics ever made. Sci Adv. 3(7):e1700782. doi:10.1126/sciadv.1700782
  • Gillespie G, Parker M, Merilees B. 1999. Distribution, abundance, biology and fisheries potential of the exotic varnish clam (Nuttallia obscurata) in British Columbia. Canadian Stock Assessment Secretariat Research Document 99/193:39.
  • Gin KY-H, Lin X, Zhang S. 2000. Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J Plankton Res. 22(8):1465–1484. doi:10.1093/plankt/22.8.1465
  • Glenn Richey R. Jr, Davis-Sramek B. 2021. What is a fatal flaw? A guide for authors & reviewers. J Business Logistics. 42:194–199. doi:10.1111/jbl.12284
  • Goldberg E. 1980. The International MUSSEL WATCH - Report of a Workshop Sponsored by the Environmental Studies Board, Commission on Natural Resources and the National Research Council. Library of Congress Catalog Card Number 80-80896. International Standard Book Number 0-309-03040-4. Washington, DC: National Academy of Sciences; p. 269.
  • Goldberg ED. 1975. The mussel watch: a first step in global marine monitoring. Mar Pollut Bull. 6(7):111–114. doi:10.1016/0025-326X(75)90271-4
  • Goldberg ED. 1986. The mussel watch concept. Environ Monit Assess. 7(1):91–103. doi:10.1007/BF00398031
  • Goldsmith AM, Jaber FH, Ahmari H, Randklev CR. 2021. Clearing up cloudy waters: a review of sediment impacts to unionid freshwater mussels. Environ Rev. 29(1):100–108. doi:10.1139/er-2020-0080
  • Gomiero A, Strafella P, Øysæd KB, Fabi G. 2019. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ Sci Pollut Res Int. 26(24):24407–24416. doi:10.1007/s11356-019-05693-y
  • Gonçalves C, Martins M, Sobral P, Costa PM, Costa MH. 2019. An assessment of the ability to ingest and excrete microplastics by filter-feeders: a case study with the Mediterranean mussel. Environ Pollut. 245:600–606. doi:10.1016/j.envpol.2018.11.038
  • Gong Y, Wang Y, Chen L, Li Y, Chen X, Liu B. 2021. Microplastics in different tissues of a pelagic squid (Dosidicus gigas) in the northern Humboldt Current ecosystem. Mar Pollut Bull. 169:112509. doi:10.1016/j.marpolbul.2021.112509
  • Goodsell PJ, Underwood AJ, Chapman MB. 2009. Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Mar Pollut Bull. 58(3):323–331. doi:10.1016/j.marpolbul.2008.10.011
  • Gorokhova E. 2015. Screening for microplastic particles in plankton samples: How to integrate marine litter assessment into existing monitoring programs? Mar Pollut Bull. 99:271–275.
  • Gouin T. 2020. Toward an improved understanding of the ingestion and trophic transfer of microplastic particles: critical review and implications for future research. Environ Toxicol Chem. 39(6):1119–1137. doi:10.1002/etc.4718
  • Gouin T, Becker RA, Collot A-G, Davis JW, Howard B, Inawaka K, Lampi M, Ramon BS, Shi J, Hopp PW. 2019. Toward the development and application of an environmental risk assessment framework for microplastic. Environ Toxicol Chem. 38(10):2087–2100. doi:10.1002/etc.4529
  • Graham A. 1949. The molluscan stomach. Trans R Soc Edinb. 61(3):737–761. doi:10.1017/S008045680001913X
  • Green DS. 2016. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ Pollut. 216:95–103. doi:10.1016/j.envpol.2016.05.043
  • Green DS, Boots B, O'Connor NE, Thompson R. 2017. Microplastics affect the ecological functioning of an important biogenic habitat. Environ Sci Technol. 51(1):68–77. doi:10.1021/acs.est.6b04496
  • Green DS, Colgan TJ, Thompson RC, Carolan JC. 2019. Exposure to microplastics reduces strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ Pollut. 246:423–434. doi:10.1016/j.envpol.2018.12.017
  • Grenon J-F, Walker G. 1982. Further fine structure studies of the “space” layer which underlies the foot sole epithelium of the limpet, Patella vulgata L. J Molluscan Stud. 48:55–63.
  • Guilhermino L, Vieira LR, Ribeiro D, Tavares AS, Cardoso V, Alves A, Almeida JM. 2018. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci Total Environ. 622623:1131–1142. doi:10.1016/j.scitotenv.2017.12.020
  • Gündoğdu S, Çevik C, Ataş NT. 2020. Stuffed with microplastics: microplastic occurrence in traditional stuffed mussels sold in the Turkish market. Food Biosci. 37:100715. doi:10.1016/j.fbio.2020.100715
  • Gwinnett C, Miller RZ. 2021. Are we contaminating our samples? A preliminary study to investigate procedural contamination during field sampling and processing for microplastic and anthropogenic microparticles. Mar Pollut Bull. 173(Pt B):113095. doi:10.1016/j.marpolbul.2021.113095
  • Gwinnett CMB, Osborne AO, Jackson ARW. 2021. The application of tape lifting for microplastic pollution monitoring. Environ Adv. 5:100066. doi:10.1016/j.envadv.2021.100066
  • Hamid FS, Jia W, Zakaria RM. 2020. Microplastics abundance and uptake by Meretrix lyrata (hard clam) in mangrove forest. J Eng Technol Sci. 52(3):436–448. doi:10.5614/j.eng.technol.sci.2020.52.3.10
  • Hamm T, Lenz M. 2021. Negative impacts of realistic doses of spherical and irregular microplastics emerged late during a 42 weeks-long exposure experiment with blue mussels. Sci Total Environ. 778:146088. doi:10.1016/j.scitotenv.2021.146088
  • Han Z, Jiang T, Xie L, Zhang R. 2022. Microplastics impact shell and pearl biomineralization of the pearl oyster Pinctada fucata. Environ Pollut. 293:118522. doi:10.1016/j.envpol.2021.118522
  • Hantoro I, Lohr AJ, Van Belleghem FGAJ, Widianarko B, Ragas AMJ. 2019. Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36(5):674–711. doi:10.1080/19440049.2019.1585581
  • Harris LST, Carrington E. 2020. Impacts of microplastic vs. natural abiotic particles on the clearance rate of a marine mussel. Limnol Oceanogr Lett. 5(1):66–73. doi:10.1002/lol2.10120
  • Harrison JP, Ojeda JJ, Romero-González ME. 2012. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 416:455–463. doi:10.1016/j.scitotenv.2011.11.078
  • Hart MW. 1991. Particle captures and the method of suspension feeding by echinoderm larvae. Biol Bull. 180(1):12–27. doi:10.2307/1542425
  • Hartmann NB, Huffer T, Thompson RC, Hassellov M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, et al. 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 53(3):1039–1047. doi:10.1021/acs.est.8b05297
  • Hawkins AJS, James MR, Hickman RW, Hatton S, Weatherhead M. 1999. Modelling of suspension-feeding and growth in the green-lipped mussel Perna canaliculus exposed to natural and experimental variations of seston available in the Marlborough Sounds, New Zealand. Mar Ecol Prog Ser. 191:217–232. doi:10.3354/meps191217
  • Hawkins AJS, Navarro E, Iglesias JIP. 1990. Comparative allometries of gut-passage time, gut content and metabolic faecal loss in Mytilus edulis and Cerastoderma edule. Mar Biol. 105(2):197–204. doi:10.1007/BF01344287
  • Hawkins AJS, RFM, Smith SH, Tan and Yasin ZB. 1998. Suspension-feeding behaviour in tropical bivalve molluscs: Perna viridis, Crassostrea belcheri, Crassostrea iradelei, Saccostrea cucculata and Pinctada margaritifera. Mar Ecol Prog Ser. 166:173–185. doi:10.3354/meps166173
  • Helm MM, Bourne N. 2004. Hatchery culture of bivalves. A practical manual. FAO Fisheries Technical Paper. No. 471. In: Lovatelli A, editor. Rome: FAO; 177 p.
  • Henderson L, Green C. 2020. Making sense of microplastics? Public understandings of plastic pollution. Mar Pollut Bull. 152:110908. doi:10.1016/j.marpolbul.2020.110908
  • Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone A-L, Laurentie M, Paul-Pont I, Soudant P, Dehaut A, et al. 2018. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem. 410(25):6663–6676. doi:10.1007/s00216-018-1279-0
  • Hermabessiere L, Paul-Pont I, Cassone AL, Himber C, Receveur J, Jezequel R, El Rakwe M, Rinnert E, Riviere G, Lambert C, et al. 2019. Microplastic contamination and pollutant levels in mussels and cockles collected along the channel coasts. Environ Pollut. 250:807–819. doi:10.1016/j.envpol.2019.04.051
  • Hermabessiere L, Rochman CM. 2021. Microwave-assisted extraction for quantification of microplastics using pyrolysis-gas chromatography/mass spectrometry. Environ Toxicol Chem. 40(10):2733–2741. doi:10.1002/etc.5179
  • Hermsen E, Mintenig SM, Besseling E, Koelmans AA. 2018. Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ Sci Technol. 52(18):10230–10240. doi:10.1021/acs.est.8b01611
  • Hernroth B, Larsson A, Edebo L. 2000. Influence on uptake, distribution and elimination of Salmonella typhimurium in the blue mussel, Mytilus edulis, by the cell surface properties of the bacteria. J Shellfish Res. 19:167–174.
  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 46(6):3060–3075. doi:10.1021/es2031505
  • Hildreth DJ, Crisp DJ. 1976. A corrected formula for calculation of filtration rate of bivalve molluscs in an experimental flowing system. J Mar Biol Ass. 56(1):111–120. doi:10.1017/S0025315400020476
  • Holland ND, Strickler JR, Leonard AB. 1986. Particle interception, transport and rejection by the feather star Oligometra serripinna (Echinodermata: Crinoidea), studied by frame analysis of videotapes. Mar Biol. 93(1):111–126. doi:10.1007/BF00428660
  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 586:127–141. doi:10.1016/j.scitotenv.2017.01.190
  • Hughes RN. 1969. A study of feeding in Scrobicularia plana. J Mar Biol Ass. 49(3):805–823. doi:10.1017/S0025315400037309
  • Hughes RN. 1970. An energy budget for a tidal-flat population of the bivalve Scrobicularia plana (Da Costa). J Anim Ecol. 9(2):357–381. doi:10.2307/2976
  • Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 54(2):187–211. doi:10.2307/1942661
  • Hurley RR, Lusher AL, Olsen M, Nizzetto L. 2018. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ Sci Technol. 52(13):7409–7417. doi:10.1021/acs.est.8b01517
  • Ibrahim YS, Azmi AA, Shukor SA, Anuar ST, Abdullah SA. 2016. Microplastics ingestion by Scapharca cornea at Setiu Wetland, Terengganu, Malaysia. Middle-East J Sci Res. 24(6):2129–2136.
  • ICES Special Request Advice. 2015. Northeast Atlantic and Arctic Ocean. OSPAR request on development of a common monitoring protocol for plastic particles in fish stomachs and selected shellfish on the basis of existing fish disease surveys. Book 1. Section 1.6.6.1. June 3. 6 p.
  • Iglesias JIP, Navarro E, Alvarez Jorna P, Armentina I. 1992. Feeding, particle selection and absorption in cockles Cerastoderma edule (L.) exposed to variable conditions of food concentration and quality. J Exp Mar Biol Ecol. 162(2):177–198. doi:10.1016/0022-0981(92)90200-T
  • Iglesias JIP, Urrutia MB, Navarro E, Alvarez-Jorna P, Larretxea X, Bougrier S, Heral M. 1996. Variability of feeding processes in the cockle Cerastoderma edule (L.) in response to changes in seston concentration and composition. J Exp Mar Biol Ecol. 197(1):121–143. doi:10.1016/0022-0981(95)00149-2
  • Isobe A, Buenaventura NT, Chastain S, Chavanich S, Cózar A, DeLorenzo M, Hagmann P, Hinata H, Kozlovskii N, Lusher AL, et al. 2019. An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. Mar Pollut Bull. 146:831–837. doi:10.1016/j.marpolbul.2019.07.033
  • Ivar do Sul JA. 2021. Why it is important to analyze the chemical composition of microplastics in environmental samples. Mar Pollut Bull. 165:112086. doi:10.1016/j.marpolbul.2021.112086
  • Ivar do Sul JA, Costa MF. 2014. The present and future of microplastic pollution in the marine environment. Environ Pollut. 185:352–364. doi:10.1016/j.envpol.2013.10.036
  • Jahan S, Strezov V, Weldekidan H, Kumar R, Kan T, Sarkodie SA, He J, Dastjerdi B, Wilson SP. 2019. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci Total Environ. 695:133924. doi:10.1016/j.scitotenv.2019.133924
  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. 2015. Marine pollution. Plastic waste inputs from land into the ocean. Science. 347(6223):768–771. doi:10.1126/science.1260352
  • Jang M, Shim WJ, Cho Y, Han GM, Song YK, Hong SH. 2020. A close relationship between microplastic contamination and coastal area use pattern. Water Res. 171:115400. doi:10.1016/j.watres.2019.115400
  • Jang M, Shim WJ, Han GM, Cho Y, Moon Y, Hong SH. 2021. Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels. Environ Pollut. 270:116272. doi:10.1016/j.envpol.2020.116272
  • Janssens L, Garcia-Vazquez E. 2021. Dangerous microplastics in topshells and anemones along the north coast of Spain. Mar Pollut Bull. 173(Pt A):112945. doi:10.1016/j.marpolbul.2021.112945
  • Jiang W, Fang J, Du M, Gao Y, Fang J, Jiang Z. 2022. Microplastics influence physiological processes, growth and reproduction in the Manila clam, Ruditapes philippinarum. Environ Pollut. 293:118502. doi:10.1016/j.envpol.2021.118502
  • Jørgensen CB. 1976. Comparative studies on the function of gills in suspension feeding bivalves, with special reference to effects of serotonin. Biol Bul. 151:331–343.
  • Jørgensen CB. 1990. Bivalve filter-feeding: hydrodynamics, bioenergetics, physiology and ecology. Fredensborg, Denmark: Olsen & Olsen. 140 p.
  • Joshy A, Sharma SRK, Mini KG. 2022. Microplastic contamination in commercially important bivalves from the southwest coast of India. Environ Pollut. 305:119250. doi:10.1016/j.envpol.2022.119250
  • Joyce PWS, Falkenberg LJ. 2022. Microplastics, both non-biodegradable and biodegradable, do not affect the whole organism functioning of a marine mussel. Sci Total Environ. 839:156204. doi:10.1016/j.scitotenv.2022.156204
  • Kach D, Ward JE. 2008. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding molluscs. Mar Biol. 153(5):797–805. doi:10.1007/s00227-007-0852-4
  • Kane IA, Clare MA, Miramontes E, Wogelius R, Rothwell JJ, Garreau P, Pohl F. 2020. Seafloor microplastic hotspots controlled by deep-sea circulation. Science. 368(6495):1140–1145. doi:10.1126/science.aba5899
  • Kang J-H, Kwon OY, Lee K-W, Song YK, Shim WJ. 2015. Marine neustonic microplastics around the southeastern coast of Korea. Mar Pollut Bull. 96(12):304–312. doi:10.1016/j.marpolbul.2015.04.054
  • Kang J-H, Kwon O-Y, Shim WJ. 2015a. Potential threat of microplastics to zooplanktivores in the surface waters of the southern Sea of Korea. Arch Environ Contam Toxicol. 69(3):340–351. doi:10.1007/s00244-015-0210-3
  • Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, Voit BJA, Chemistry B. 2016. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 408(29):8377–8391. doi:10.1007/s00216-016-9956-3
  • Käppler A, Fischer M, Scholz-Böttcher BM, Oberbeckmann S, Labrenz M, Fischer D, Eichhorn K-J, Voit B. 2018. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal Bioanal Chem. 410(21):5313–5327. doi:10.1007/s00216-018-1185-5
  • Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, Eichhorn K-J, Voit B. 2015. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem. 407(22):6791–6801. doi:10.1007/s00216-015-8850-8
  • Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B. 2017. A high-performance protocol for extraction of microplastics in fish. Sci Total Environ. 578:485–494. doi:10.1016/j.scitotenv.2016.10.213
  • Karlsson TM, Kärrman A, Rotander A, Hassellöv M. 2020. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ Sci Pollut Res Int. 27(5):5559–5571. doi:10.1007/s11356-019-07274-5
  • Karlsson TM, Vethaak AD, Almroth BC, Ariese F, van Velzen M, Hassellov M, Leslie HA. 2017. Screening for microplastics in sediment, water, marine invertebrates and fish: method development and microplastic ­accumulation. Mar Pollut Bull. 122(12):403–408. doi:10.1016/j.marpolbul.2017.06.081
  • Kazour M, Jemaa S, Issa C, Khalaf G, Amara R. 2019. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): occurrence in surface water, sediments and biota samples. Sci Total Environ. 696:133933. doi:10.1016/j.scitotenv.2019.133933
  • Kedzierski M, Le Tilly V, César G, Sire O, Bruzaud S. 2017. Efficient microplastics extraction from sand. A cost effective methodology based on sodium iodide recycling. Mar Pollut Bull. 115(12):120–129. doi:10.1016/j.marpolbul.2016.12.002
  • Keisling C, Harris RD, Blaze J, Coffin J, Byers JE. 2020. Low concentrations and low spatial variability of marine microplastics in oysters (Crassostrea virginica) in a rural Georgia estuary. Mar Pollut Bull. 150:110672. doi:10.1016/j.marpolbul.2019.110672
  • Kennedy VS, Newell RIE, Eble AF. 1996. The Eastern Oyster: Crassostrea virginica. University of Maryland, Sea Grant College Program, College Park, Maryland; 750 p.
  • Khalid A, Zalouk-Vergnoux A, Benali S, Mincheva R, Raquez J-M, Bertrand S, Poirier L. 2021. Are bio-based and biodegradable microplastics impacting for blue mussel (Mytilus edulis)? Mar Pollut Bull. 167:112295. doi:10.1016/j.marpolbul.2021.112295
  • Khalil AM. 1996. The influence of algal concentration and body size on filtration and ingestion rates of the clam Tapes decussatus (L.) (Mollusca: Bivalvia). Aquac Res. 27(8):613–621. doi:10.1111/j.1365-2109.1996.tb01294.x
  • Khan MB, Prezant RS. 2018. Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa. Mar Pollut Bull. 130:67–75. doi:10.1016/j.marpolbul.2018.03.012
  • Khoironi A, Anggoro S, Sudarno S. 2018. The existence of microplastic in Asian green mussels. IOP Conf Ser: Earth Environ Sci. 131:012050. doi:10.1088/1755-1315/131/1/012050
  • Kimbrough KL, Johnson WE, Lauenstein GG, Christensen JD, Apeti DA. 2008. An assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone. Silver Spring, MD: NOAA Technical Memorandum NOS NCCOS 74. 105 p.
  • Kinjo A, Mizukawa K, Takada H, Inoue K. 2019. Size-dependent elimination of ingested microplastics in the Mediterranean mussel Mytilus galloprovincialis. Mar Pollut Bull. 149:110512. doi:10.1016/j.marpolbul.2019.110512
  • Kiørboe T, Mølenberg F, Nøhr O. 1980. Feeding, particle selection and carbon absorption in Mytilus edulis in different mixtures of algae and resuspended bottom material. Ophelia. 19(2):193–205. doi:10.1080/00785326.1980.10425516
  • Klasios N, De Frond H, Miller E, Sedlak M, Rochman CM. 2021. Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environ Pollut. 271:116260. doi:10.1016/j.envpol.2020.116260
  • Koelmans AA, Bakir A, Burton GA, Janssen CR. 2016. Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol. 50(7):3315–3326. doi:10.1021/acs.est.5b06069
  • Koelmans AA, Besseling E, Foekema E, Kooi M, Mintenig S, Ossendorp BC, Redondo-Hasselerharm PE, Verschoor A, van Wezel AP, Scheffer M. 2017. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ Sci Technol. 51(20):11513–11519. doi:10.1021/acs.est.7b02219
  • Koelmans AA, Bessling E, Shim WJ. 2015. Chapter 12. Nanoplastics in the aquatic environment. Critical Review In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Berline: Springer; p. 325–340.
  • Koelmans AA, Nor NHM, Hermsen E, Kooi M, Mintenig SM, De France J. 2019. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155:410–422. doi:10.1016/j.watres.2019.02.054
  • Koenig JL. 1992. Spectroscopy of polymers. Washington, DC: American Chemical Society. 328 p.
  • Kolandhasamy P, Su L, Li J, Qu X, Jabeen K, Shi H. 2018. Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion. Sci Total Environ. 610611:635–640. doi:10.1016/j.scitotenv.2017.08.053
  • Korniushin AV. 2004. A revision of some Asian and African freshwater clams assigned to Corbicula fluminalis (Müller, 1774) (Mollusca: Bivalvia: Corbiculidae), with a review of anatomical characters and reproductive features based on museum collections. Hydrobiologia. 529(1):255–270. doi:10.1007/s10750-004-9322-x
  • Kraeuter J, Haven DS. 1970. Fecal pellets of common invertebrates of lower York River and lower Chesapeake Bay, Virginia. Chesapeake Sci. 11(3):159–173. doi:10.2307/1351239
  • Kraeuter JN, Castagna M, editors. 2001. The biology of the hard clam, Vol. 31. Elsevier, Devel: Aquaculture Fisheries Science. 751 p.
  • Kroon F, Motti C, Talbot S, Sobral P, Puotinen M. 2018. A workflow for improving estimates of microplastic contamination in marine waters: a case study from North-Western Australia. Environ Pollut. 238:26–38. doi:10.1016/j.envpol.2018.03.010
  • Kühn S, van Werven B, van Oyen A, Meijboom A, Rebolledo ELB, van Franeker JA. 2017. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar Pollut Bull. 115(12):86–90. doi:10.1016/j.marpolbul.2016.11.034
  • La Nasa J, Biale G, Fabbri D, Modugno F. 2020. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics. J Anal Appl Pyrolysis. 149:104841. doi:10.1016/j.jaap.2020.104841
  • La Nasa J, Biale G, Mattonai M, Modugno F. 2021. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples. J Hazard Mater. 401:123287. doi:10.1016/j.jhazmat.2020.123287
  • Lambert S, Sinclair C, Boxall A. 2014. Occurrence, degradation, and effect of polymer-based materials in the environment. Rev Environ Contam Toxicol. 227:1–53.
  • Langknecht T, Lao W, Wong CS, Kotar S, El Khatib D, Robinson S, Burgess RM, Ho KY. 2023. Comparison of two procedures for microplastics analysis in sediments based on an interlaboratory exercise. Chemosphere. 313:137479. doi:10.1016/j.chemosphere.2022.137479
  • Larsen PS, Riisgård HU. 2012. Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves. Biol Open. 1(1):6–11. doi:10.1242/bio.2011011
  • Lattin GL, Moore CJ, Zellers AF, Moore SL, Weisberg SB. 2004. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar Pollut Bull. 49:291–294.
  • Law KL, Thompson RC. 2014. Microplastics in the seas. Science. 345(6193):144–145. doi:10.1126/science.1254065
  • Leblanc K, Quéguiner B, Cornet FDV, Michel-Rodriguez M, Durrieu de Madron X, Bowler C, Malviya S, Thyssen M, Grégori G, Rembauville M, et al. 2018. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 9(1):953. doi:10.1038/s41467-018-03376-9
  • Lee HC, Khan MM, Yusli AA, Jaya NA, Marshall DJ. 2022. Microplastic accumulation in oysters along a Bornean coastline (Brunei, South China Sea): insights into local sources and sinks. Mar Pollut Bull. 177:113478. doi:10.1016/j.marpolbul.2022.113478
  • Lei J, Payne BS, Wang SY. 1996. Filtration dynamics of the zebra mussel, Dreissena polymorpha. Can J Fish Aquat Sci. 53(1):29–37. doi:10.1139/f95-164
  • Lenz R, Enders K, Nielsen TG. 2016. Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci USA. 113(29):E4121–E4122. doi:10.1073/pnas.1606615113
  • Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. 2015. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 100(1):82–91. doi:10.1016/j.marpolbul.2015.09.026
  • Leslie H, Brandsma SH, van Velzen MJM, Vethaak AD. 2017. Microplastics en route: field measurements in the Dutch River delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int. 101:133–142. doi:10.1016/j.envint.2017.01.018
  • Levinton JS, Ward JE, Shumway SE. 2002. Feeding responses of the bivalves Crassostrea gigas and Mytilus trossulus to chemical composition of fresh and aged kelp detritus. Mar Biol. 141(2):367–376. doi:10.1007/s00227-002-0830-9
  • Levinton JS, Ward JE, Thompson RJ. 1996. Biodynamics of particle processing in bivalve molluscs: models, data, and future directions. Invertebr Biol. 115(3):232–242. doi:10.2307/3226933
  • Li H-X, Ma L-S, Lin L, Ni Z-X, Xu X-R, Shi H-H, Yan Y, Zheng G-M, Rittschof D. 2018a. Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China. Environ Pollut. 236:619–625. doi:10.1016/j.envpol.2018.01.083
  • Li J, Green C, Reynolds A, Shi H, Rotchell JM. 2018b. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ Pollut. 241:35–44. doi:10.1016/j.envpol.2018.05.038
  • Li J, Lusher AL, Rotchell JM, Deudero S, Turra A, Bråte ILN, Sun C, Hossain MS, Li Q, Kolandhasamy P, et al. 2019a. Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut. 244:522–533. doi:10.1016/j.envpol.2018.10.032
  • Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, Li D, Shi H. 2016. Microplastics in mussels along the coastal waters of China. Environ Pollut. 214:177–184. doi:10.1016/j.envpol.2016.04.012
  • Li J, Yang D, Li L, Jabeen K, Shi H. 2015. Microplastics in commercial bivalves from China. Environ Pollut. 207:190–195. doi:10.1016/j.envpol.2015.09.018
  • Li L, Su L, Cai H, Rochman CM, Li Q, Kolandhasamy P, Peng J, Shi H. 2019b. The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere. 221:107–114. doi:10.1016/j.chemosphere.2019.01.024
  • Li R, Zhang S, Zhang L, Yu K, Wang S, Wang Y. 2020. Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf. Environ Pollut. 263(Pt B):114368. doi:10.1016/j.envpol.2020.114368
  • Liao C-P, Chiu C-C, Huang H-W. 2021. Assessment of microplastics in oysters in coastal areas of Taiwan. Environ Pollut. 286:117437. doi:10.1016/j.envpol.2021.117437
  • Lo HKA, Chan KYU. 2018. Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environ Pollut. 233:588–595. doi:10.1016/j.envpol.2017.10.095
  • Löder MGJ, Gerdts G. 2015. Chapter 8. Methodology used for the detection and identification of microplastics—A critical appraisal In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; p. 201–227.
  • Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. 2015. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 12(5):563–581. doi:10.1071/EN14205
  • Lohmann R. 2017. Microplastics are important for the cycling and bioaccumulation of organic pollutants in the oceans – but should microplastics be considered POPs themselves. Integr Environ Assess Manag. 13(3):460–465. doi:10.1002/ieam.1914
  • Loosanoff VL. 1962. Effects of turbidity on some larval and adult bivalves. Gulf Caribbean Fish Inst Proc. 14:80–94.
  • Loosanoff VL, Engle JB. 1947. Effects of different concentrations of micro-organisms on the feeding of oysters (O. virginica). U.S. Fish and Wildlife Serv Fish Bull. 51:31–57.
  • Lotsy JP. 1893. The food supply of the adult oyster, soft clam, clam, and mussel. Johns Hopkins Univ Circulars. 12(106):104–105.
  • Lourenço PM, Serra-Goncalves C, Ferreira JL, Catry T, Granadeiro JP. 2017. Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and West Africa. Environ Pollut. 231(Pt 1):123–133. doi:10.1016/j.envpol.2017.07.103
  • Lozano-Hérnandez EA, Ramirez-Alvarez N, Mendoza LMR, Macias-Zamora JV, Sanchez-Osorio JL, Hernandez-Guzman FA. 2021. Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico. Environ Pollut. 290:118031. doi:10.1016/j.envpol.2021.118031
  • Luan L, Wang X, Zheng H, Liu L, Luo L, Li F. 2019. Differential toxicity of functionalized polystyrene microplastics to clams (Meretrix meretrix) at three key development stages of life history. Mar Pollut Bull. 139:346–354. doi:10.1016/j.marpolbul.2019.01.003
  • Lusher A, Brâte ILN, Hurley R, Iversen K, Olsen M. 2017a. Testing of methodology for measuring microplastics in blue mussels (Mytilus spp.) and sediments, and recommendations for future monitoring of microplastics (R & D-project). Norway: Norwegian Institute for Water Research (NIVA).
  • Lusher AL. 2015. Microplastics in the marine environment: distribution, interactions and effects. Chapter 10 In: Bergmann M., Gutow L, Klages M, editors. Marine anthropogenic litter. Cham, Switzerland: Springer International Publishing; p. 245–307.
  • Lusher AL, Brate ILN, Munno K, Hurley RR, Welden NA. 2020a. Is it or isn’t it: the importance of visual classification in microplastic characterization. Appl Spectrosc. 74(9):1139–1153. doi:10.1177/0003702820930733
  • Lusher AL, Burke A, O'Connor I, Officer R. 2014. Microplastic pollution in the northeast Atlantic Ocean: validated and opportunistic sampling. Mar Pollut Bull. 88(12):325–333. doi:10.1016/j.marpolbul.2014.08.023
  • Lusher AL, Hollman PCH, Mendoza-Hill JJ. 2017b. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. Rome, Italy: FAO Fisheries and Aquaculture Technical Paper. No. 615. FAO. 126 p.
  • Lusher AL, Munno K, Hermabessiere L, Carr S. 2020b. Isolation and extraction of microplastics from environmental samples: an evaluation of practical approaches and recommendations for further harmonization. Appl Spectrosc. 74(9):1049–1065. doi:10.1177/0003702820938993
  • Lusher AL, Welden NA, Sobral P, Cole M. 2017c. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods. 9(9):1346–1360. doi:10.1039/C6AY02415G
  • MacDonald BA, Ward JE. 1994. Variation in food quality and particle selectivity in the sea scallop Placopecten magellanicus (Mollusca: Bivalvia). Mar Ecol Prog Ser. 108:251–264. doi:10.3354/meps108251
  • Maes T, Barry J, Stenton C, Roberts E, Hicks R, Bignell J, Vethaak AD, Leslie HA, Sanders M. 2020. The world is your oyster: low-dose, long-term microplastic exposure of juvenile oysters. Heliyon. 6:e03103.
  • Maes T, Van der Meulen MD, Devriese LI, Leslie HA, Huvet A, Frère L, Robbens J, Vethaak AD. 2017. Microplastics baseline surveys at the water surface and in sediments of the North-east Atlantic. Front Mar Sci. 4:135. doi:10.3389/fmars.2017.00135
  • Magni S, Gagné F, André C, Torre CD, Auclair J, Hanana H, Parenti CC, Bonasoro F, Binelli A. 2018. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). Sci Total Environ. 631632:778–788. doi:10.1016/j.scitotenv.2018.03.075
  • Mai L, Bao L-J, Shi L, Wong CS, Zeng EY. 2018. A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res Int. 25(12):11319–11332. doi:10.1007/s11356-018-1692-0
  • Mankin C, Huvard A. 2020. Microfibers in Mytilus species (Mollusca, Bivalvia) from southern California harbors, beaches, and supermarkets. AJUR. 17(2):35–44. doi:10.33697/ajur.2020.019
  • Martinelli JC, Phan S, Luscombe CK, Padilla-Gamino JL. 2020. Low incidence of microplastic contaminants in Pacific oysters (Crassostrea gigas Thunberg) from the Salish Sea, USA. Sci Total Environ. 715:136826. doi:10.1016/j.scitotenv.2020.136826
  • Mathalon A, Hill P. 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull. 81(1):69–79. doi:10.1016/j.marpolbul.2014.02.018
  • Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T. 2001. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol. 35(2):318–324. doi:10.1021/es0010498
  • Mayer S. 1994. Particle capture in the crown of the ciliary suspension feeding polychaete Sabella penicillus: videotape recordings and interpretations. Mar Biol. 119(4):571–582. doi:10.1007/BF00354320
  • Mayoma BS, Sorensen C, Shashoua Y, Khan FR. 2020. Microplastics in beach sediments and cockles (Anadara antiquata) along the Tanzanian coastline. Bull Environ Contam Toxicol. 105(4):513–521. doi:10.1007/s00128-020-02991-x
  • McCoy KA, Hodgson DJ, Clark PF, Morritt D. 2020. The effects of wet wipe pollution on the Asian clam, Corbicula fluminea (Mollusca: Bivalvia) in the River Thames, London. Environ Pollut. 264:114577. doi:10.1016/j.envpol.2020.114577
  • McLean N. 1980. Phagocytosis by epidermal cells of the mantle in Mytilus edulis L. (Mollusca: Bivalvia). Comp Biochem Physiol Part A: Mol Integr Physiol. 66(2):367–369. doi:10.1016/0300-9629(80)90180-2
  • Mecozzi M, Pietroletti M, Monakhova YB. 2016. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: application to monitoring studies. Mar Pollut Bull. 106(12):155–161. doi:10.1016/j.marpolbul.2016.03.012
  • Mendenhall E. 2018. Oceans of plastic: a research agenda to propel policy development. Mar Pol. 96:291–298. doi:10.1016/j.marpol.2018.05.005
  • Menzel RW. 1955. Some phases of the biology of Ostrea equestris Say and a comparison with Crassostrea virginica (Gmelin). Inst Mar Sci. 4:69–153.
  • Metz T, Koch M, Lenz P. 2020. Quantification of microplastics: which parameters are essential for a reliable inter-study comparison? Mar Pollut Bull. 157:111330. doi:10.1016/j.marpolbul.2020.111330
  • Milke LM, Ward JE. 2003. Influence of diet on pre-ingestive particle processing in bivalves: II. Pallial cavity residence times and particle handling on the labial palps. J Exp Mar Biol Ecol. 293(2):151–172. doi:10.1016/S0022-0981(03)00217-X
  • Miller EA, Yamahara KM, French C, Spingarn N, Birch JM, Van Houtan KS. 2022. A Raman spectral reference library of potential anthropogenic and biological ocean polymers. Sci Data. 9(1):780. doi:10.1038/s41597-022-01883-5
  • Miller ME, Kroon FJ, Motti CA. 2017. Recovering microplastics from marine samples: a review of current practices. Mar Pollut Bull. 123(12):6–18. doi:10.1016/j.marpolbul.2017.08.058
  • Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, van Wezel AP. 2018. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci: Nano. 5(7):1640–1649. doi:10.1039/C8EN00186C
  • Mishra S, Rath CC, Das AP. 2019. Marine microfiber pollution: a review on present status and future challenges. Mar Pollut Bull. 140:188–197. doi:10.1016/j.marpolbul.2019.01.039
  • Møhlenberg F, Kiørboe T. 1981. Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material. Ophelia. 20(1):79–90. doi:10.1080/00785236.1981.10426563
  • Møhlenberg F, Riisgard HU. 1978. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia. 17(2):239–246. doi:10.1080/00785326.1978.10425487
  • Moore CJ, Moore SL, Leecaster MK, Weisberg SB. 2001. A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Pollut Bull. 42(12):1297–1300.
  • Moore HB. 1931. The specific identification of faecal pellets. J Mar Biol Ass. 17(2):359–365. doi:10.1017/S0025315400050888
  • Moreschi AC, Callil CT, Christo SW, Junior ALF, Nardes C, de Faria E, Girard P. 2020. Filtration, assimilation and elimination of microplastics by freshwater bivalves. Case Stud Chem Environ Eng. 2:100053. doi:10.1016/j.cscee.2020.100053
  • Morton JE. 1960. The function of the gut in ciliary feeders. Biol Rev. 35(1):92–139. doi:10.1111/j.1469-185X.1960.tb01324.x
  • Morton JE. 1967. Molluscs. 4th ed. London: Hutchinson; 244 p.
  • Morton JE. 1979. Molluscs. 5th ed. London: Hutchinson; 264 p.
  • Munno K, Helm PA, Jackson DA, Rochman C, Sims A. 2018. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem. 37(1):91–98. doi:10.1002/etc.3935
  • Murphy CL. 2018. A comparison of microplastics in farmed and wild shellfish near vancouver island and potential implications for contaminant transfer to humans [master’s thesis]. Royal Roads University Victoria, British Columbia, Canada.
  • Naidu SA. 2019. Preliminary study and first evidence of presence of microplastics and colorants in green mussel, Perna viridis (Linnaeus, 1758), from southeast coast of India. Mar Pollut Bull. 140:416–422. doi:10.1016/j.marpolbul.2019.01.024
  • Naji A, Nuri M, Vethaak AD. 2018. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ Pollut. 235:113–120. doi:10.1016/j.envpol.2017.12.046
  • Nakahara H, Bevelander G. 1967. Ingestion of particulate matter by the outer surface cells of the mollusc mantle. J Morphol. 122(2):139–145. doi:10.1002/jmor.1051220206
  • Nakao S, Ozaki A, Yamazaki K, Masumoto K, Nakatani T, Sakiyama T. 2020. Microplastics contamination in tidelands of the Osaka Bay area in western Japan. Water Environ J. 34(3):474–488. doi:10.1111/wej.12541
  • Nalbone L, Cincotta F, Giarratana F, Ziino G, Panebianco A. 2021. Microplastics in fresh and processed mussels sampled from fish shops and large retail chains in Italy. Food Control. 125:108003. doi:10.1016/j.foodcont.2021.108003
  • Nam PN, Tuan PQ, Thuy DT, Quynh LTP, Amiard F. 2019. Contamination of microplastic in bivalve: first evaluation in Vietnam. Vietnam J Earth Sci. 41(3):252–258. doi:10.15625/0866-7187/41/3/13925
  • National Aquaculture Association (NAA). 2021. Policy on Plastics. https://thenaa.net/mission-and-policies/.
  • National Marine Fisheries Service (NMFS). 2020. Fisheries of the United States, 2020. U.S. Department of Commerce, NOAA Current Fishery Statistics No. 2020. https://www.fisheries.noaa.gov/national/sustainable-fisheries/fisheries-united-states.
  • Navarro EI, Iglesias JIP. 1993. Infaunal filter-feeding bivalves and the physiological response to short-term fluctuations in food availability and composition In: Dame RF, editor. Bivalve filter feeders in estuarine and coastal ecosystem processes. Berlin: Springer-Verlag; p. 25–56.
  • Navarro EI, Iglesias JIP, Ortega MM. 1992. Natural sediment as a food source for the cockle Cerastoderma edule (L.): effect of variable particle concentration on feeding, digestion and the scope for growth. J Exp Mar Biol Ecol. 156(1):69–87. doi:10.1016/0022-0981(92)90017-5
  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M. 2021. A 20-year retrospective review of global aquaculture. Nature. 591(7851):551–563. doi:10.1038/s41586-021-03308-6
  • Nel HA, Chetwynd AJ, Kelleher L, Lynch I, Mansfield I, Margenat H, Onoja S, Goldberg Oppenheimer P, Sambrook Smith GH, Krause S. 2021. Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Chemosphere. 263:127953. doi:10.1016/j.chemosphere.2020.127953
  • Nel HA, Froneman PW. 2015. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar Pollut Bull. 101:274–279.
  • Newell RC. 1979. Biology of intertidal animals. Kent, UK: Marine Ecological Surveys Ltd; 781 p.
  • Newell RC, Shumway SE. 1993. Grazing of natural particles by bivalve molluscs: a spatial and temporal perspective In: Dame RF, editor. bivalve filter feeders in estuarine and coastal ecosystem processes. Nato, ASI Series, Vol. G33. Berlin: Springer-Verlag; p. 85–148.
  • Newell RC, Shumway SE, Cucci T, Selvin R. 1989. The effects of natural seston particle size and type on feeding rates, feeding selectivity and food resource availability for the mussel, Mytilus edulis Linnaeus, 1758 at bottom culture sites in Maine. J Shellfish Res. 8:187–196.
  • Newell RIE. 1982. An evaluation of the wet oxidation technique for use in determining the energy content of seston samples. Can J Fish Aquat Sci. 39(10):1383–1388. doi:10.1139/f82-186
  • Newell RIE. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalves molluscs: a review. J Shellfish Res. 23:51–61.
  • Newell RIE, Jordan SJ. 1983. Preferential ingestion of organic material by the American oyster Crassostrea virginica. Mar Ecol Prog Ser. 13:47–53. doi:10.3354/meps013047
  • Nikki R, Jaleel KUA, Ragesh S, Shini S, Saha M, Kumar PKD. 2021. Abundance and characteristics of microplastics in commercially important bottom dwelling finfishes and shellfish of the Vembanad Lake, India. Mar Pollut Bull. 172:112803. doi:10.1016/j.marpolbul.2021.112803
  • Noren F. 2007. Small plastic particles in coastal Swedish Waters. N-research report. Sweden: Commissioned by KIMO; 11 p.
  • Nuelle MT, Dekiff JH, Remy D, Fries E. 2014. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 184:161–169. doi:10.1016/j.envpol.2013.07.027
  • Oliveira AR, Sardinha-Silva A, Andrews PLR, Green D, Cooke GM, Hall S, Blackburn K, Sykes AV. 2020. Microplastics presence in cultured and wild-caught cuttlefish, Sepia officinalis. Mar Pollut Bull. 160:111553. doi:10.1016/j.marpolbul.2020.111553
  • Opitz T, Benitez S, Fernández C, Osores S, Navarro JM, Rodriguez-Romero A, Lohrmann KB, Lardies MA. 2021. Minimal impact at current environmental concentrations of microplastics on energy balance and physiological rates of the giant mussel Choromytilus chorus. Mar Pollut Bull. 162:111834. doi:10.1016/j.marpolbul.2020.111834
  • OSPAR Commission. 2013. Background Document and Technical Annexes for Biological Effects Monitoring, Update 2013. OSPAR Monitoring and Assessment Series No. 589/2013; 238 p.
  • Ourgaud M, Phuong NN, Papillon L, Panagiotopoulos C, Galgani F, Schmidt N, Fauvelle V, Brach-Papa C, Sempere R. 2022. Identification and quantification of microplastics in the marine environment using the Laser Direct Infrared (LDIR) technique. Environ Sci Technol.T 56(14):9999–10009. doi:10.1021/acs.est.1c08870
  • Owen G. 1956. Observations on the stomach and digestive diverticula of the Lamellibranchia II. The nuculidae. Q J Microsc Sci. s3-97(40):541–567. doi:10.1242/jcs.s3-97.40.541
  • Owen G. 1974. Feeding and digestion in the Bivalvia In: Lowenstein O, editor. Advances in comparative physiology and biochemistry. Vol. 5. New York: Academic Press; p. 1–35.
  • Owen G. 1978. Classification and the bivalve gill. Philos Trans R Soc B. 284:377–385.
  • Pales-Espinosa E, Hassan D, Ward JE, Shumway SE, Allam B. 2010a. Role of epicellular molecules in the selection of particles by the blue mussel, Mytilus edulis. Biol Bull. 219(1):50–60. doi:10.1086/BBLv219n1p50
  • Pales-Espinosa E, Perrigault M, Ward JE, Shumway SE, Allam B. 2010b. Microalgal cell surface carbohydrates as recognition sites for particle sorting in suspension-feeding bivalves. Biol Bull. 218(1):75–86. doi:10.1086/BBLv218n1p75
  • Palmer RE, Williams LG. 1980. Effect of particle concentration on filtration efficiency of the bay scallop Argopecten irradians and the oyster Crassostrea virginica. Ophelia. 19(2):163–174. doi:10.1080/00785326.1980.10425514
  • Pan J-F, Wen-Xiong W. 2004. Differential uptake of dissolved and particulate organic carbon by the marine mussel Perna viridis. Limnol Oceanogr. 49(6):1980–1991. doi:10.4319/lo.2004.49.6.1980
  • Patria MP, Santoso CA, Tsabita N. 2020. Microplastic ingestion by periwinkle snail Littoraria scabra and mangrove crab Metopograpsus quadridentata in Pramuka Island, Jakarta Bay, Indonesia. JSM. 49(09):2151–2158. doi:10.17576/jsm-2020-4909-13
  • Patterson J, KI, Jeyasanta RL, Laju and Edward JKP. 2021. Microplastic contamination in Indian edible mussels (Perna perna and Perna viridis) and their environs. Mar Pollut Bull. 171:112678. doi:10.1016/j.marpolbul.2021.112678
  • Patterson J, Jeyasanta KI, Sathish N, Booth AM, Edward JKP. 2019. Profiling microplastics in the Indian edible oyster, Magallan bilineata collected from the Tuticorin coast, Gulf of Mannar, Southeastern India. Sci Total Environ. 691:727–735. doi:10.1016/j.scitotenv.2019.07.063
  • Paul-Pont I, Lacroix C, Gonzalez Fernández C, Hegaret H, Lambert C, Le Goïc N, Frere L, Cassone A-L, Sussarellu R, Fabioux C, et al. 2016. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut. 216:724–737. doi:10.1016/j.envpol.2016.06.039
  • Paul-Pont I, Tallec K, Gonzalez-Fernández C, Lambert C, Vincent D, Mazurais D, Zambonio-Infante J-L, Brotons G, Lagarde F, Fabioux C, et al. 2018. Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. Front Mar Sci. 5:252. doi:10.3389/fmars.2018.00252
  • Pauna VH, Buonocore E, Renzi M, Russo GF, Franzese PP. 2019. The issue of microplastics in marine ecosystems: a bibliometric network analysis. Mar Pollut Bull. 149:110612. doi:10.1016/j.marpolbul.2019.110612
  • Pazos RS, Spaccesi F, Gomez N. 2020. First record of microplastics in the mussel Limnoperna fortune. Reg Stud Mar Sci. 38:101360. doi:10.1016/j.rsma.2020.101360
  • Pedersen AF, Gopalakrishnan K, Boegehold AG, Peraino NJ, Westrick JA, Kashian DR. 2020. Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environ Pollut. 260:113964. doi:10.1016/j.envpol.2020.113964
  • Pennec L, M, M, Diouris A. Herry 1988. Endocytosis and lysis of bacteria in gill epithelium of Bathymodiolus thermophilus, Thyasira flexuosaand, Lucinella divaricate bivalve molluscs. J Shellfish Res. 7:483–490.
  • Pérez AF, Ojeda M, Rimondino GN, Chiesa IL, Di Mauro R, Boy CC, Calcagno JA. 2020. First report of microplastics presence in the mussel Mytilus chilensis from Ushuaia Bay (Beagle Channel, Tierra del Fuego, Argentina). Mar Pollut Bull. 161(Pt B):111753. doi:10.1016/j.marpolbul.2020.111753
  • Phothakwanpracha J, Lirdwitayaprasit T, Pairohakul S. 2021. Effects of sizes and concentrations of different types of microplastics on bioaccumulation and lethality rate in the green mussel, Perna viridis. Mar Pollut Bull. 173(Pt A):112954. doi:10.1016/j.marpolbul.2021.112954
  • Phuong NN, Poirier L, Pham QT, Lagarde F, Zalouk-Vergnoux A. 2018b. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: location, season and/or mode of life? Mar Pollut Bull. 129(2):664–674. doi:10.1016/j.marpolbul.2017.10.054
  • Phuong NN, Zalouk-Vergnoux A, Kamari A, Mouneyrac C, Amiard F, Poirier L, Lagarde F. 2018a. Quantification and characterization of microplastics in blue mussels (Mytilus edulis): protocol setup and preliminary data on the contamination of the French Atlantic coast. Environ Sci Pollut Res Int. 25(7):6135–6144. doi:10.1007/s11356-017-8862-3
  • Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Chatel A, Mouneyrac C, Lagarde F. 2016. Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environ Pollut. 211:111–123. doi:10.1016/j.envpol.2015.12.035
  • Piarulli S, Airoldi L. 2020. Mussels facilitate the sinking of microplastics to bottom sediments and their subsequent uptake by detritus-feeders. Environ Pollut. 266(Pt 2):115151. doi:10.1016/j.envpol.2020.115151
  • Pittura L, Avio CG, Giuliani ME, d‘Errico G, Keiter S, Cormier B, Gorbi S, Regoli F. 2018. Microplastics as vehicles of environmental PAHs to marine organisms: combined chemical and physical hazards to the Mediterranean mussels, Mytilus galloprovincialis. Front Mar Sci. 5:103. doi:10.3389/fmars.2018.00103
  • Plee TA, Pomory CM. 2020. Microplastics in sandy environments in the Florida Keys and the panhandle of Florida, and the ingestion by sea cucumbers (Echinodermata: Holothuroidea) and sand dollars (Echinodermata: Echinoidea). Mar Pollut Bull. 158:111437. doi:10.1016/j.marpolbul.2020.111437
  • Polysciences Inc. 2009. Polystyrene microspheres: frequently asked questions. Warrington, PA: Technical Data Sheet; p. 238.
  • Prata JC, Reis V, da Costa JP, Mouneyrac C, Duarte AC, Rocha-Santos T. 2021. Contamination issues as a challenge in quality control and quality assurance in microplastics analytics. J Hazard Mater. 403:123660. doi:10.1016/j.jhazmat.2020.123660
  • Primpke S, Christiansen SH, Cowger W, De Frond H, Deshpande A, Fischer M, Holland EB, Meyns M, O'Donnell BA, Ossmann BE, et al. 2020a. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl Spectrosc. 74(9):1012–1047. doi:10.1177/0003702820921465
  • Primpke S, Cross RK, Mintenig SM, Simon M, Vianello A, Gerdts G, Vollertsen J. 2020b. Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis. Appl Spectrosc. 74(9):1127–1138. doi:10.1177/0003702820917760
  • Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. 2017. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 9(9):1499–1511. doi:10.1039/C6AY02476A
  • Primpke S, Wirth M, Lorenz C, Gerdts G. 2018. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal Bioanal Chem. 410(21):5131–5141. doi:10.1007/s00216-018-1156-x
  • Prins TC, Smaal AC, Dame R. 1997. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquatic Ecol. 31(4):349–359. doi:10.1023/A:1009924624259
  • Provencher JF, Ammendolia J, Rochman CM, Mallory ML. 2019. Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ Rev. Rev 27(3):304–317. doi:10.1139/er-2018-0079
  • Provencher JF, Covernton GA, Moore RC, Horn DA, Conkle JL, Lusher AL. 2020. Proceed with caution: the need to raise the publication bar for microplastics research. Sci Total Environ. 748:141426. doi:10.1016/j.scitotenv.2020.141426
  • Qiu Q, Tan Z, Wang J, Peng J, Li M, Zhan Z. 2016. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuarine Coastal Shelf Sci. 176:102–109. doi:10.1016/j.ecss.2016.04.012
  • Qu X, Su L, Li H, Liang M, Shi H. 2018. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Sci Total Environ. 621:679–686. doi:10.1016/j.scitotenv.2017.11.284
  • Quinn B, Murphy F, Ewins C. 2017. Validation of density separation for the rapid recovery of microplastics from sediment. Anal Methods. 9(9):1491–1498. doi:10.1039/C6AY02542K
  • Railo S, Talvitie J, Setala O, Koistinen A, Lehtiniemi M. 2018. Application of an enzyme digestion method reveals microlitter in Mytilus trossulus at a wastewater discharge area. Mar Pollut Bull. 130:206–214. doi:10.1016/j.marpolbul.2018.03.022
  • Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann PWJr., et al. 2010. Biodiversity conservation: challenges beyond 2010. Science. 329(5997):1298–1303. doi:10.1126/science.1189138
  • Reguera P, Vinas L, Gago J. 2019. Microplastics in wild mussels (Mytilus spp.) from the north coast of Spain. Sci Mar. 83(4):337–347. doi:10.3989/scimar.04927.05A
  • Reid RGB, McMahon RF, Foighil DO, Finnigan R. 1992. Anterior inhalant currents and pedal feeding in bivalves. Veliger. 35:93–104.
  • Reid RGB. 1965. The structure and function of the stomach in bivalve molluscs. J Zool. 147(2):156–184. doi:10.1111/j.1469-7998.1965.tb04640.x
  • Renner G, Nellessen A, Schwiers A, Wenzel M, Schmidt TC, Schram J. 2019. Data preprocessing and evaluation used in the microplastics identification process: a critical review and practical guide. TrAC Trends Anal Chem. 111:229–238. doi:10.1016/j.trac.2018.12.004
  • Renzi M, Guerranti C, Blašković A. 2018. Microplastic contents from maricultured and natural mussels. Mar Pollut Bull. 131(Pt A):248–251. doi:10.1016/j.marpolbul.2018.04.035
  • Resgalla C Jr., Brasil ES, Salamao LC. 2006. Physiological rates in different classes of sizes of Perna perna (Linnaeus 1758) submitted to experimental laboratory conditions. Brazilian J Bio. 66(1B):325–336.
  • Revel M, Chatel A, Perrein-Ettajani H, Bruneau M, Akcha F, Sussarellu R, Rouxel J, Costil K, Decottignies P, Cognie B, et al. 2020. Realistic environmental exposure to microplastics does not induce biological effects in the Pacific oyster Crassostrea gigas. Mar Pollut Bull. 150:110627. doi:10.1016/j.marpolbul.2019.110627
  • Revel M, Lagarde F, Perrein-Ettajani H, Bruneau M, Akcha F, Sussarellu R, Rouxel J, Costil K, Decottignies P, Cognie B, et al. 2019. Tissue-specific biomarker responses in the blue mussel, Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Front Environ Sci. 7:33. doi:10.3389/fenvs.2019.00033
  • Ribeiro F, Garcia AR, Pereira BP, Fonseca M, Mestre NC, Fonseca TG, Ilharco LM, Bebianno MJ. 2017. Microplastics effects in Scrobicularia plana. Mar Pollut Bull. 122(12):379–391. doi:10.1016/j.marpolbul.2017.06.078
  • Ribeiro F, O'Brien JW, Galloway T, Thomas KV. 2019. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. Trends Anal Chem. 111:139–147. doi:10.1016/j.trac.2018.12.010
  • Ribeiro F, Okoffo ED, O'Brien JW, Fraissinet-Tachet S, O'Brien S, Gallen M, Samanipour S, Kaserzon S, Mueller JF, Galloway T, et al. 2020. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ Sci Technol. 54(15):9408–9417. doi:10.1021/acs.est.0c02337
  • Richardson BJ. 2012. Baseline is 30 years young. Mar Pollut Bull. 64(7):1271–1272. doi:10.1016/j.marpolbul.2012.05.030
  • Richardson BJ. 2022. Baseline reflections: Some thoughts on two decades of editorship. Mar Pollut Bull. 179:113678.
  • Riisgård HU. 1977. On measurements of the filtration rates of suspension feeding bivalves in a flow system. Ophelia. 16(2):167–173. doi:10.1080/00785326.1977.10425468
  • Riisgård HU. 1988. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Mar Ecol Prog Ser. 45:217–223. doi:10.3354/meps045217
  • Riisgård HU, Larsen PS. 2000a. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J Sea Res. 44(34):169–193. doi:10.1016/S1385-1101(00)00054-X
  • Riisgård HU, Larsen PS. 2000b. A comment on experimental techniques for studying particle capture in filter feeding bivalves. Limnol Oceanogr. 45(5):1192–1195. doi:10.4319/lo.2000.45.5.1192
  • Riisgård HU, Larsen PS, Nielsen NF. 1996. Particle capture in the mussel Mytilus edulis: the role of laterofrontal cirri. Mar Biol. 127(2):259–266. doi:10.1007/BF00942111
  • Ríos MF, Hernandez-Moresino RD, Galvan DE. 2020. Assessing urban microplastic pollution in a benthic habitat of Patagonia Argentina. Mar Pollut Bull. 159:111491. doi:10.1016/j.marpolbul.2020.111491
  • Ríos LM, Moore C, Jones PR. 2007. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull. 54(8):1230–1237. doi:10.1016/j.marpolbul.2007.03.022
  • Rist S, Baun A, Almeda R, Hartmann NB. 2019. Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Mar Pollut Bull. 140:423–430. doi:10.1016/j.marpolbul.2019.01.069
  • Rist SE, Assidqi K, Zamani NP, Appel D, Perschke M, Huhn M, Lenz M. 2016. Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Perna viridis. Mar Pollut Bull. 111(12):213–220. doi:10.1016/j.marpolbul.2016.07.006
  • Robinson WE, Wehling WE, Morse MP. 1984. The effect of suspended clay on feeding and digestive efficiency of the surf clam, Spisula solidissima (Dillwyn). J Exp Mar Biol Ecol. 74(1):1–12. doi:10.1016/0022-0981(84)90034-0
  • Robledo JAF, Yadavalli R, Allam B, Pales-Espinosa E, Gerdol M, Greco S, Stevick RJ, Gomez-Chiarri M, Zhang Y, Heil CA, et al. 2019. From the raw bar to the bench: bivalves as models for human health. Dev Comp Immunol. 92:260–282. doi:10.1016/j.dci.2018.11.020
  • Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, Athey S, Huntington A, McIlwraith H, Munno K, et al. 2019. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem. 38(4):703–711. doi:10.1002/etc.4371
  • Rochman CM, Regan F, Thompson RC. 2017. On the harmonization of methods for measuring the occurrence, fate and effects of microplastics. Anal Methods. 9(9):1324–1325. doi:10.1039/C7AY90014G
  • Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, Teh FC, Werorilangi S, Teh SJ. 2015. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 5:14340. doi:10.1038/srep14340
  • Rodrigues AR, Mestre NCC, Fonseca T. G D, Pedro PZ, Carteny CC, Cormier B, Keiter S, Bebianno MJ. 2022. Influence of particle size on ecotoxicity of low-density polyethylene microplastics, with and without adsorbed benzo-a-pyrene, in clam Scrobicularia plana. Biomolecules. 12(1):78. doi:10.3390/biom12010078
  • Rojas-Jimenez K, Villalobos-Rojas F, Gatgens-Garcia J, Rodriguez-Arias M, Hernandez-Montero N, Wehrtmann IS. 2022. Presence of microplastics in six bivalve species (Mollusca, Bivalvia) commercially exploited at the Pacific coast of Costa Rica, Central America. Mar Pollut Bull. 183:114040. doi:10.1016/j.marpolbul.2022.114040
  • Rosa M, Ward JE, Holohan BA, Shumway SE, Wikfors GH. 2017. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J Exp Mar Biol Ecol. 486:59–68. doi:10.1016/j.jembe.2016.09.007
  • Rosa M, Ward JE, Shumway SE. 2018. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J Shellfish Res. 37(4):727–746. doi:10.2983/035.037.0405
  • Rosa M, Ward JE, Shumway SE, Wikfors GH, Espinosa EP, Allam B. 2013. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. J Exp Mar Biol Ecol. 446:320–327. doi:10.1016/j.jembe.2013.05.011
  • Rosas-Luis R. 2016. Description of plastic remains found in the stomach contents of the jumbo squid Dosidicus gigas landed in Ecuador during 2014. Mar Pollut Bull. 113(12):302–305. doi:10.1016/j.marpolbul.2016.09.060
  • Ryan PG, Moore CJ, van Franeker JA, Moloney CL. 2009. Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc Lond B Biol Sci. 364(1526):1999–2012. doi:10.1098/rstb.2008.0207
  • Said RM, Nassar SE, Mohamed AA. 2022. Assessment of microplastic and trace element pollution in the southeastern Mediterranean coasts, Egypt, using shellfish Arca noae as a bioindicator. Mar Pollut Bull. 177:113493. doi:10.1016/j.marpolbul.2022.113493
  • Saley AM, Smart AC, Bezerra MF, Burnham TLU, Capece LR, Lima LFO, Carsh AC, Williams SL, Morgan SG. 2019. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar Pollut Bull. 146:54–59. doi:10.1016/j.marpolbul.2019.05.065
  • Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. 2022. A review on microplastics and nanoplastics in the environment: their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar Pollut Bull. 181:113832. doi:10.1016/j.marpolbul.2022.113832
  • Santana MFM, Ascer LG, Custodio MR, Moreira FT, Turra A. 2016. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: rapid evaluation through bioassessment. Mar Pollut Bull. 106(12):183–189. doi:10.1016/j.marpolbul.2016.02.074
  • Santana MFM, Moreira FT, Pereira CDS, Abessa DMS, Turra A. 2018. Continuous exposure to microplastics does not cause physiological effects in the cultivated mussel Perna perna. Arch Environ Contam Toxicol. 74(4):594–604. doi:10.1007/s00244-018-0504-3
  • Santana MFM, Moreira FT, Turra A. 2017. Trophic transference of microplastics under a low exposure scenario: insights on the likelihood of particle cascading along marine food-webs. Mar Pollut Bull. 121(12):154–159. doi:10.1016/j.marpolbul.2017.05.061
  • Santillo D, Miller K, Johnston P. 2017. Microplastics as contaminants in commercially important seafood species. Integr Environ Assess Manag. 13(3):516–521. 10.1002/ieam.1909
  • SAPEA (Science Advice for Policy by European Academies). 2019. A scientific perspective on microplastics in nature and society. Berlin: SAPEA. Evidence Review Report No. 4; 173 p.
  • Sargeant JM, Del Rocio AM, Rajić A, Waddell L. 2005. A guide to conducting systematic reviews in agri-food public health. Hamilton – Ontario: Public Health Agency of Canada; 84 p.
  • Sathish MN, Jeyasanta KI, Patterson J. 2020. Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India. Environ Pollut. 266(Pt 1):115219. doi:10.1016/j.envpol.2020.115219
  • Scanes E, Wood H, Ross P. 2019. Microplastics detected in haemolymph of the Sydney rock oyster Saccostrea glomerata. Mar Pollut Bull. 149:110537. doi:10.1016/j.marpolbul.2019.110537
  • Schessl M, Johns C, Ashpole SL. 2019. Microbeads in sediment, Dreissenid mussels, and anurans in the littoral zone of the upper St. Lawrence River, New York. Pollution. 5(1):41–52.
  • Scopetani C, Esterhuizen-Londt M, Chelazzi D, Cincinelli A, Setala H, Pflugmacher S. 2020. Self-contamination from clothing in microplastics research. Ecotoxicol Environ Saf. 189:110036. doi:10.1016/j.ecoenv.2019.110036
  • Scott N, Porter A, Santillo D, Simpson H, Lloyd-Williams S, Lewis C. 2019. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar Pollut Bull. 146:125–133. doi:10.1016/j.marpolbul.2019.05.041
  • Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel—GEF. 2012. Impacts of marine debris on biodiversity: current status and potential solutions. Montreal, Technical Series No. 67; 61 p.
  • Sendra M, Sparaventi E, Novoa B, Figueras A. 2021. An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Sci Total Environ. 753:142024. doi:10.1016/j.scitotenv.2020.142024
  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M. 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 185:77–83. doi:10.1016/j.envpol.2013.10.013
  • Setälä O, Norkko J, Lehtiniemi M. 2016. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull. 102(1):95–101. doi:10.1016/j.marpolbul.2015.11.053
  • Seuront L. 2018. Microplastic leachates impair behavioural vigilance and predator avoidance in a temperate intertidal gastropod. Biol Lett. 14(11):20180453. doi:10.1098/rsbl.2018.0453
  • Sfriso AA, Tomio Y, Rosso B, Gambaro A, Sfriso A, Corami F, Rastelli E, Corinaldesi C, Mistri M, Munari C. 2020. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ Int. 137:105587. doi:10.1016/j.envint.2020.105587
  • Shang Y, Gu H, Li S, Chang X, Sokolova I, Fang JKH, Wei S, Chen X, Hu M, Huang W, et al. 2021. Microplastics and food shortage impair the byssal attachment of thick-shelled mussel Mytilus coruscus. Mar Environ Res. 171:105455. doi:10.1016/j.marenvres.2021.105455
  • Sharma S, Chatterjee S. 2017. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res. 24(27):21530–21547. doi:10.1007/s11356-017-9910-8
  • Shim WJ, Hong SH, Eo SE. 2017. Identification methods in microplastic analysis: a review. Anal Methods. 9(9):1384–1391. doi:10.1039/C6AY02558G
  • Shim WJ, Song YK, Hong SH, Jang M. 2016. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 113(12):469–476. doi:10.1016/j.marpolbul.2016.10.049
  • Shumway SE, Cucci RC, Newell RC, Yentsch CM. 1985. Particle selection, ingestion, and absorption in filter feeding bivalves. J Exp Mar Biol Ecol. 91(12):77–92. doi:10.1016/0022-0981(85)90222-9
  • Shumway SE, Cucci TL, Lesser MP, Bourne N, Bunting B. 1997. Particle clearance and selection in three species of juvenile scallops. Aquacult Int. 5(1):89–99. doi:10.1007/BF02764790
  • Shumway SE, Frank DM, Ewart LM, Ward JE. 2003. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquac Res. 34(15):1391–1402. doi:10.1111/j.1365-2109.2003.00958.x
  • Shumway SE, Parsons GJ, editors. 2016. Scallops: biology, ecology, aquaculture, and fisheries. Oxford: Elsevier Science and Technology; 1214 p.
  • Shumway SE, Selvin R, Schick DF. 1987. Food resources related to habitat in the scallop Placopecten magellanicus (Gmelin, 1791): a qualitative study. J Shellfish Res. 6:89–95.
  • Shumway SE, Sherman SA, Cembella AD, Selvin R. 1994. Accumulation of paralytic shellfish toxins by surfclams, Spisula solidissima (Dillwyn, 1897) in the Gulf of Maine: seasonal changes, distribution between tissues, and notes on feeding habits. Nat Toxins. 2(4):236–251. doi:10.1002/nt.2620020413
  • Shumway SE, Ward JE, Heupel E, Holohan BA, Heupel J, Heupel T, Padilla DK. 2014. Observations of feeding in the common Atlantic slippersnail Crepidula fornicata L., with special reference to the mucus net. J Shellfish Res. 33(1):279–291. doi:10.2983/035.033.0127
  • Shumway SE, Ward JE, Mladinich K. 2018. Stop the bandwagon, we want to get off! East Coast Shellfish Growers Association Newsletter, Issue 3, August 1–2.
  • Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. 2016. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 60:223–230. doi:10.1016/j.ecolind.2015.06.036
  • Sıkdokur E, Belivermiş M, Sezer N, Pekmez M, Bulan ÖK, Kılıç Ö. 2020. Effects of microplastics and mercury on manila clam Ruditapes philippinarum: feeding rate, immunomodulation, histopathology and oxidative stress. Environ Pollut. 262:114247. doi:10.1016/j.envpol.2020.114247
  • Silverman H, Achberger EC, Lynn JW, Dietz TH. 1995. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina texasensis. Biol Bull. 189(3):308–319. doi:10.2307/1542148
  • Smaal AC, Ferreira JG, Grant J, Petersen JK, Strand O, editors. 2019. Good and services of marine bivalves. Cham, Switzerland: Springer; 591 p.
  • Smith M, Love DC, Rochman CM, Neff RA. 2018. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 5(3):375–386. doi:10.1007/s40572-018-0206-z
  • Solow AR, Gallager SM. 1990. Analysis of capture efficiency in suspension feeding: application of nonparametric binary regression. Mar Biol. 107(2):341–344. doi:10.1007/BF01319834
  • Song JA, Choi CY, Park H-S. 2020. Exposure of bay scallop Argopecten irradians to micro-polystyrene: bioaccumulation and toxicity. Comp Biochem Physiol C Toxicol Pharmacol. 236:108801. doi:10.1016/j.cbpc.2020.108801
  • Song YK, Hong SH, Eo S, Shim WJ. 2021. A comparison of spectroscopic analysis methods for microplastics: manual, semi-automated, and automated Fourier transform infrared and Raman techniques. Mar Pollut Bull. 173(Pt B):113101. 2021). doi:10.1016/j.marpolbul.2021.113101
  • Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, Shim WJ. 2015. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 93(12):202–209. doi:10.1016/j.marpolbul.2015.01.015
  • Song YK, Hong SH, Jang M, Kang J-H, Kwon OY, Han GM, Shim WJ. 2014. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol. 48(16):9014–9021. doi:10.1021/es501757s
  • Sorensen RM, Jovanović B. 2021. From nanoplastic to microplastic: a bibliometric analysis on the presence of plastic particles in the environment. Mar Pollut Bull. 163:111926. doi:10.1016/j.marpolbul.2020.111926
  • Sparks C. 2020. Microplastics in mussels along the coast of Cape Town, South Africa. Bull Environ Contam Toxicol. 104(4):423–431. 10.1007/s00128-020-02809-w
  • Sparks C, Awe A, Maneveld J. 2021. Abundance and characteristics of microplastics in retail mussels from Cape Town, South Africa. Mar Pollut Bull. 166:112186. doi:10.1016/j.marpolbul.2021.112186
  • State Water Resources Control Board. 2021a. Standard operating procedures for extraction and measurement by infrared spectroscopy of microplastic particles in drinking water. September 24. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/microplastics.html.
  • State Water Resources Control Board. 2021b. Standard operating procedures for extraction and measurement by raman spectroscopy of microplastic particles in drinking water. September 24. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/microplastics.html.
  • Steer M, Thompson RC. 2020. Plastics and microplastics: impacts in the marine environment. Chapter 3 In: Streit-Bianchi M, Cimadevila M, Trettnak W, editors. Mare plasticum – The plastic sea. combatting plastic pollution through science and art. Springer, Cham, Switzerland; p. 49–72.
  • Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H. 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut. 234:347–355. doi:10.1016/j.envpol.2017.11.075
  • Su L, Xue Y, Li L, Yang D, Kolandhasamy P, Li D, Shi H. 2016. Microplastics in Taihu Lake, China. Environ Pollut. 216:711–719. doi:10.1016/j.envpol.2016.06.036
  • Sui M, Lu Y, Wang Q, Hu L, Huang X, Liu X. 2020. Distribution patterns of microplastics in various tissues of the Zhikong scallop (Chlamys farreri) and in the surrounding culture seawater. Mar Pollut Bull. 160:111595. doi:10.1016/j.marpolbul.2020.111595
  • Sui Y, Zhang T, Yao X, Yan M, Yang L, Mohsen M, Nguyen H, Zhang S, Jiang H, Lv L, et al. 2022a. Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Environ Pollut. 308:119598. doi:10.1016/j.envpol.2022.119598
  • Sui Y, Zheng L, Chen Y, Xue Z, Cao Y, Mohsen M, Nguyen H, Zhang S, Lv L, Wang C. 2022b. Combined effects of short term exposure to seawater acidification and microplastics on the early development of the oyster Crassostrea rivularis. Aquaculture. 549:737746. doi:10.1016/j.aquaculture.2021.737746
  • Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le Goïc N, Quillien V, Mingant C, Epelboin Y, et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci USA. 113(9):2430–2435. doi:10.1073/pnas.1519019113
  • Sutherland WJ, Clout M, Côté IM, Daszak P, Depledge MH, Fellman L, Fleishman E, Garthwaite R, Gibbons DW, De Lurio J, et al. 2010. A horizon scan of global conservation issues for 2010. Trends Ecol Evol. 25(1):1–7. doi:10.1016/j.tree.2009.10.003
  • Tahir A, Samawi MF, Sari K, Hidayat R, Nimzet R, Wicaksono EA, Asrul L, Werorilangi S. 2019. Studies on microplastic contamination in seagrass beds at Spermonde Archipelago of Makassar Strait, Indonesia. J Phys: Conf Ser. 1341(2):022008. doi:10.1088/1742-6596/1341/2/022008
  • Talsness CE, Andrade AJM, Kuriyama SN, Taylor JA, Vom Saal FS. 2009. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci. 364(1526):2079–2096. doi:10.1098/rstb.2008.0281
  • Tamburri MN, Zimmer-Faust RK. 1996. Suspension feeding: basic mechanisms controlling recognition and ingestion of larvae. Limnol Oceanogr. Oceanogr. 41(6):1188–1197. doi:10.4319/lo.1996.41.6.1188
  • Tanabe S, Prudente MS, Kan-Atireklap S, Subramanian A. 2000. Mussel Watch: marine pollution monitoring of butyltins and organochlorines in coastal waters of Thailand, Philippines and India. Ocean Coast Manage. 43(89):819–839. doi:10.1016/S0964-5691(00)00060-0
  • Teichert S, Loder MGJ, Pyko I, Mordek M, Schulbert C, Wisshak M, Laforsch C. 2021. Microplastic contamination of the drilling bivalve Hiatella arctica in Arctic rhodolith beds. Sci Rep. 11(1):14574. doi:10.1038/s41598-021-93668-w
  • Teng J, Wang Q, Ran W, Wu D, Liu Y, Sun S, Liu H, Cao R, Zhao J. 2019. Microplastic in cultured oysters from different coastal areas of China. Sci Total Environ. 653:1282–1292. doi:10.1016/j.scitotenv.2018.11.057
  • Teng J, Zhao J, Zhu X, Shan E, Zhang C, Zhang W, Wang Q. 2021. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas. Environ Pollut. 269:116169. doi:10.1016/j.envpol.2020.116169
  • Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci. 364(1526):2027–2045. doi:10.1098/rstb.2008.0284
  • Thain JE, Vethaak AD, Hylland K. 2008. Contaminants in marine ecosystems: developing an integrated indicator framework using biological-effect techniques. ICES J Mar Sci. 65(8):1508–1514. doi:10.1093/icesjms/fsn120
  • Thaysen C, Munno K, Hermabessiere L, Rochman CM. 2020. Towards Raman automation for microplastics: developing strategies for particle adhesion and filter subsampling. Appl Spectrosc. 74(9):976–988. doi:10.1177/0003702820922900
  • Thiele CJ, Hudson MD, Russell AE. 2019. Evaluation of existing methods to extract microplastics from bivalve tissue: adapted KOH digestion protocol improves filtration at single-digit pore size. Mar Pollut Bull. 142:384–393. doi:10.1016/j.marpolbul.2019.03.003
  • Thompson RC, Moore CJ, Vom Saal FS, Swan SH. 2009. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 364(1526):2153–2166. doi:10.1098/rstb.2009.0053
  • Thushari GGN, Senevirathna JDM, Yakupitiyage A, Chavanich S. 2017. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation. Mar Pollut Bull. 124(1):349–355. doi:10.1016/j.marpolbul.2017.06.010
  • Tincani FH, Galvan GL, Marques AEML, Santos GS, Pereira LS, Da Silva TA, Silva De Assis HC, Barbosa RV, Cestari MM. 2017. Pseudoreplication and the usage of biomarkers in ecotoxicological bioassays. Environ Toxicol Chem. 36(10):2868–2874. doi:10.1002/etc.3823
  • Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarra IM, Van den Eede G. 2019. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A.36(5):639–673. doi:10.1080/19440049.2019.1583381
  • Trestrail C, Walpitagama M, Miranda A, Nugegoda D, Shimeta J. 2021. Microplastics alter digestive enzyme activities in the marine bivalve, Mytilus galloprovincialis. Sci Total Environ. 779:146418. doi:10.1016/j.scitotenv.2021.146418
  • Troost TA, Desclaux T, Leslie HA, van der Meulen MD, Vethaak AD. 2018. Do microplastics affect marine ecosystem productivity? Mar Pollut Bull. 135:17–29. doi:10.1016/j.marpolbul.2018.05.067
  • Truchet DM, Forero Lopez AD, Ardusso MG, Rimondino GN, Buzzi NS, Malanca FE, Spetter CV, Fernández Severini MD. 2021. Microplastics in bivalves, water and sediments from a touristic sandy beach of Argentina. Mar Pollut Bull. 173(Pt B):113023. doi:10.1016/j.marpolbul.2021.113023
  • Uddin S, Fowler SW, Saeed T, Naji A, Al-Jandal N. 2020. Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. Mar Pollut Bull. 158:111374. doi:10.1016/j.marpolbul.2020.111374
  • Ukeles R. 1969. Nutritional requirements in shellfish culture In: Price KS, Maurer DL, editors. Proceeding of the Conference on the Artificial Propagation of Commercially Valuable Shellfish. University of Delaware, Newark, Delaware.
  • Underwood AJ, Chapman MG, Browne MA. 2017. Some problems and practicalities in design and interpretation of samples of microplastic waste. Anal Methods. 9(9):1332–1345. doi:10.1039/C6AY02641A
  • Urban ER, Kirchman DL. 1992. Effect of kaolinite clay on the feeding activity of the eastern oyster Crassostrea virginica. J Exp Mar Biol Ecol. 160(1):47–60. doi:10.1016/0022-0981(92)90109-N
  • Urban ER, Langdon CJ. 1984. Reduction in costs of diets for the American oyster, Crassostrea virginica (Gmelin), by the use of non-algal supplements. Aquaculture. 38(4):277–291. doi:10.1016/0044-8486(84)90333-8
  • Utne Skåre J, Alexander J, Haave M, Jakubowicz I, Knutsen HK, Lusher A, Ogonowski M, Rakkestad KE, Skaar I, Tvedt Sverdrup LE, et al. 2019. Microplastics: occurrence, levels, and implications for environment and human health related to food (no. VKMReport 2019:16). Oslo, Norway: Norwegian Scientific Committee for Food and Environment (VKM); 175 p.
  • Vahl O. 1972. Efficiency of particle retention in Mytilus edulis L. Ophelia. 10(1):17–25. doi:10.1080/00785326.1972.10430098
  • Van Cauwenberghe L, Claessens M, Janssen CR. 2013. Selective uptake of microplastics by marine bivalve (Mytilus edulis). Commun Agric Appl Biol Sci. 78(1):25–27.
  • Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR. 2015. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut. 199:10–17. doi:10.1016/j.envpol.2015.01.008
  • Van Cauwenberghe L, Janssen CR. 2014. Microplastics in bivalves cultured for human consumption. Environ Pollut. 193:65–70. doi:10.1016/j.envpol.2014.06.010
  • van Weel PB. 1961. The comparative physiology of digestion in mussels. Am Zool. 1(2):245–252. doi:10.1093/icb/1.2.245
  • Vandermeersch G, Van Cauwenberghe L, Janssen CR, Marques A, Granby K, Fait G, Kotterman MJ, Diogène J, Bekaert K, Robbens J, et al. 2015. A critical view on microplastic quantification in aquatic organisms. Environ Res. 143(Pt B):46–55. doi:10.1016/j.envres.2015.07.016
  • Vethaak AD, Legler J. 2021. Microplastics and human health. Science. 371(6530):672–674. doi:10.1126/science.abe5041
  • Vieira KS, Neto JAB, Crapez MAC, Gaylarde C, Pierri BS, Saldana-Serrano M, Bainy ACD, Nogueira DJ, Fonseca EM. 2021. Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea gasar in the Paranagúa estuarine system, Brazil. Mar Pollut Bull. 166:112225. doi:10.1016/j.marpolbul.2021.112225
  • von Friesen LW, Granberg ME, Hassellov M, Gabrielsen GW, Magnusson K. 2019. An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Mar Pollut Bull. 142:129–134. doi:10.1016/j.marpolbul.2019.03.016
  • von Moos N, Burkhardt-Holm P, Köhler A. 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol. 46(20):11327–11335. doi:10.1021/es302332w
  • Waite HR, Donnelly MJ, Walters LJ. 2018. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar Pollut Bull. 129(1):179–185. doi:10.1016/j.marpolbul.2018.02.026
  • Wakkaf T, El Zrelli R, Kedzierski M, Balti R, Shaiek M, Mansour L, Tlig-Zouari S, Bruzaud S, Rabaoui L. 2020. Microplastics in edible mussels from a southern Mediterranean lagoon: preliminary results on seawater-mussel transfer and implications for environmental protection and seafood safety. Mar Pollut Bull. 158:111355. doi:10.1016/j.marpolbul.2020.111355
  • Waldschläger K, Bruckner MZM, Almroth BC, Hackney CR, Adyel TM, Alimi OS, Belontz SL, Cowger W, Doyle D, Gray A, et al. 2022. Learning from natural sediments to tackle microplastics challenges: a multidisciplinary perspective. Earth Sci Rev. 228:104021. doi:10.1016/j.earscirev.2022.104021
  • Wang D, Su L, Ruan HD, Chen J, Lu J, Lee C-H, Jiang SY. 2021. Quantitative and qualitative determination of microplastics in oyster, seawater and sediment from the coastal areas in Zhuhai, China. Mar Pollut Bull. 164:112000. doi:10.1016/j.marpolbul.2021.112000
  • Wang J, Wang M, Ru S. 2019. High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Sci Total Environ. 651:1661–1669.
  • Wang S, Hu M, Zheng J, Huang W, Shang Y, Fang JK-H, Shi H, Wang Y. 2021a. Ingestion of nano/micro plastic particles by the mussel Mytilus coruscus is size dependent. Chemosphere. 263:127957. doi:10.1016/j.chemosphere.2020.127957
  • Wang S, Zhong Z, Li Z, Wang X, Gu H, Huang W, Fang JK-H, Shi H, Hu M, Wang Y. 2021b. Physiological effects of plastic particles on mussels are mediated by food presence. J Hazard Mater. 404(Pt A):124136. doi:10.1016/j.jhazmat.2020.124136
  • Wang Z-M, Wagner J, Ghosal S, Bedi G, Wall S. 2017. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci Total Environ. 603604:616–626. doi:10.1016/j.scitotenv.2017.06.047
  • Ward JE. 1996. Biodynamics of suspension-feeding in adult bivalve molluscs: particle capture, processing and fate. Invertebr Biol. 115(3):218–231. doi:10.2307/3226932
  • Ward JE, Kach DJ. 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension feeding bivalves. Mar Environ Res. 68(3):137–142. doi:10.1016/j.marenvres.2009.05.002
  • Ward JE, Levinton JS, Shumway SE. 2003. Influence of diet on pre-ingestive particle processing in bivalves: I. Transport velocities on the ctenidium. J Exp Mar Biol Ecol. 293(2):129–149. doi:10.1016/S0022-0981(03)00218-1
  • Ward JE, Levinton JS, Shumway SE, Cucci T. 1997. Site of particle selection in a bivalve mollusc. Nature. 390(6656):131–132. doi:10.1038/36481
  • Ward JE, Levinton JS, Shumway SE, Cucci T. 1998a. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Mar Biol. 131(2):283–292. doi:10.1007/s002270050321
  • Ward JE, MacDonald BA. 1996. Pre-ingestive feeding behaviors of two sub-tropical bivalves (Arca zebra and Pinctada imbricata): responses to an acute increase in suspended sediment concentration. Bull Mar Sci. 59:417–432.
  • Ward JE, MacDonald BA, Targett NM, Vrolijk NH. 1994a. Influence of particle density and surface characteristics on suspension-feeding in two species of bivalves (Arca zebra and Mytilus edulis). J Shellfish Res. 13:305.
  • Ward JE, MacDonald BA, Thompson RJ, Beninger PG. 1993. Mechanisms of suspension feeding in bivalves: resolution of current controversies by means of endoscopy. Limnol Oceanogr. 38(2):265–272. doi:10.4319/lo.1993.38.2.0265
  • Ward JE, Newell RIE, Thompson RJ, MacDonald BA. 1994b. In vivo studies of suspension-feeding processes in the eastern oyster Crassostrea virginica (Gmelin). Biol Bull. 186(2):221–240. doi:10.2307/1542056
  • Ward JE, Rosa M, Shumway SE. 2019a. Capture, ingestion and egestion of microplastics by suspension-feeding bivalves: a 40-year history. Anthropocene Coasts. 2(1):39–49. doi:10.1139/anc-2018-0027
  • Ward JE, Sanford LP, Newell RIE, MacDonald BA. 1998b. A new explanation of particle capture in suspension-feeding bivalve molluscs. Limnol Oceanogr. 43(5):741–752. doi:10.4319/lo.1998.43.5.0741
  • Ward JE, Shumway SE. 2004. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol. 300(12):83–130. doi:10.1016/j.jembe.2004.03.002
  • Ward JE, Targett NM. 1989. Influence of marine microalgal metabolites on the feeding behavior of the blue mussel Mytilus edulis. Mar Biol. 101(3):313–321. doi:10.1007/BF00428127
  • Ward JE, Zhao S, Holohan B, Mladinich K, Griffin T, Wozniak J, Shumway S. 2019b. Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): implications for using bivalves as bioindicators of microplastic pollution. Environ Sci Technol. 53(15):8776–8784. doi:10.1021/acs.est.9b02073
  • Wardlaw C, Prosser RS. 2020. Investigation of microplastics in freshwater mussels (Lasmigona costata) from the Grand River watershed in Ontario, Canada. Water Air Soil Pollut. 231:405.
  • Watts AJR, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, Galloway TS. 2014. Uptake and retention of microplastics by the shore crab Carcinus manenas. Environ Sci Technol. 48(15):8823–8830. doi:10.1021/es501090e
  • Weber A, Jeckel N, Weil C, Umbach S, Brennholt N, Reifferscheid G, Wagner M. 2021. Ingestion and toxicity of polystyrene microplastics in freshwater bivalves. Environ Toxicol Chem. 40(8):2247–2260. doi:10.1002/etc.5076
  • Webb S, Ruffell H, Marsden I, Pantos O, Gaw S. 2019. Microplastics in the New Zealand green lipped mussel Perna canaliculus. Mar Pollut Bull. 149:110641. doi:10.1016/j.marpolbul.2019.110641
  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA. 2012. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem. 31(11):2490–2497. doi:10.1002/etc.1984
  • Weinstein JE, Ertel BM, Gray AD. 2022. Accumulation and depuration of microplastic fibers, fragments, and tire particles in the eastern oyster, Crassostrea virginica: a toxicokinetic approach. Environ Pollut. 308:119681. doi:10.1016/j.envpol.2022.119681
  • Weis JS. 2019. Improving microplastic research. AIMS Environ Sci. 6(5):326–340.
  • Weis JS, Palmquist KH. 2021. Reality check: experimental studies on microplastics lack realism. Appl Sci. 11(18):8529. doi:10.3390/app11188529
  • Wesch C, Bredimus K, Paulus M, Klein R. 2016. Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environ Pollut. 218:1200–1208. doi:10.1016/j.envpol.2016.08.076
  • Widdows J, Fieth P, Worrall CM. 1979. Relationship between seston, available food and feeding activity in the common mussel Mytilus edulis. Mar Biol. 50(3):195–207. doi:10.1007/BF00394201
  • Wiedenhoft H. 2018. Plastics finding their way into our food supply. Aquac North America. 10.
  • Wikfors GH, Patterson GW, Ghosh P, Lewin RA, Smith BC, Alix JH. 1996. Growth of post-set oysters, Crassostrea virginica, on high-lipid strains of algal flagellates Tetraselmis spp. Aquaculture. 143(34):411–419. − doi:10.1016/0044-8486(96)01265-3
  • Williams LG. 1978. Influence of algal cell volume and algal culture filtrates on suspension feeding behavior of the gastropod Crepidula fornicata (Prosobranchia: Calyptraeidae) [doctoral dissertation]. Newark, Del: University of Delaware.
  • Williams LG. 1982. Mathematical analysis of the effects of particle retention efficiency on determination of filtration rate. Mar Biol. 66(2):171–177. doi:10.1007/BF00397190
  • Winter JE. 1977. A critical review on some aspects of filter-feeding in lamellibranchiate bivalves. Haliotis. 7:71–87.
  • Winter JE. 1978. A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture. 13(1):1–33. doi:10.1016/0044-8486(78)90124-2
  • Wong SL, Nyakuma BB, Wong KY, Lee CT, Lee TH, Lee CH. and 2020. Nanoplastics in global food webs: a bibliometric analysis (2009–2019). Mar Pollut Bull. 158:111432. doi:10.1016/j.marpolbul.2020.111432
  • Woodall LC, Gwinnett C, Packer M, Thompson RC, Robinson LF, Paterson GLJ. 2015. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar Pollut Bull. 95(1):40–46. doi:10.1016/j.marpolbul.2015.04.044
  • Woods MN, Stack ME, Fields DM, Shaw SD, Matrai PA. 2018. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Mar Pollut Bull. 137:638–645. doi:10.1016/j.marpolbul.2018.10.061
  • World Health Organization (WHO). 2022. Dietary and inhalation exposure to nano- and microplastic particles and potential implications for human health. Geneva: CC BYNC-SA 3.0 IGO; 140 p.
  • Worrall CM, Widdows J, Lowe DM. 1983. Physiological ecology of three populations of the bivalve Scrobicularia plana. Mar Ecol Prog Ser. 12:267–279. doi:10.3354/meps012267
  • Wright SL, Kelly FJ. 2017. Plastic and human health: a micro issue? Environ Sci Technol. 51(12):6634–6647. doi:10.1021/acs.est.7b00423
  • Wright SL, Thompson RC, Galloway TS. 2013. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 178:483–492. doi:10.1016/j.envpol.2013.02.031
  • Wu F, Wang Y, Leung JYS, Huang W, Zeng J, Tang Y, Chen J, Shi A, Yu X, Xu X, et al. 2020. Accumulation of microplastics in typical commercial aquatic species: a case study at a productive aquaculture site in China. Sci Total Environ. 708:135432. doi:10.1016/j.scitotenv.2019.135432
  • Xu X, Wong CY, Tam NFY, Lo H-S, Cheung S-G. 2020. Microplastics in invertebrates on soft shores in Hong Kong: influence of habitat, taxa and feeding mode. Sci Total Environ. 715:136999. doi:10.1016/j.scitotenv.2020.136999
  • Xu X-Y, Lee WT, Chan AKY, Lo HS, Shin PKS, Cheung SG. 2017. Microplastic ingestion reduces energy intake in the clam Atactodea striata. Mar Pollut Bull. 124(2):798–802. doi:10.1016/j.marpolbul.2016.12.027
  • Yahel G, Marie D, Beninger PG, Eckstein S, Genin A. 2009. In situ evidence for pre-capture qualitative selection in the tropical bivalve Lithophaga simplex. Aquat Biol. 6:235–246. doi:10.3354/ab00131
  • Yap VHS, Chase Z, Wright JT, Hurd CL, Lavers JL, Lenz M. 2020. A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Mar Pollut Bull. 160:111703. doi:10.1016/j.marpolbul.2020.111703
  • Yeager MM, Cherry DS, Neves RJ. 1994. Feeding and burrowing behaviors of juvenile rainbow mussels, Villosa iris (Bivalvia: Unionidae). J North Am Benthol Soc. 13(2):217–222. doi:10.2307/1467240
  • Yonge CM. 1949. On the structure and adaptations of the Tellinacea, deposit-feeding Eulamellibranchia. Philos Trans R Soc B. 234:29–76.
  • Yonge CM. 1957. Mantle fusion in the Lamellibranchia. Pubblicazioni Della Stazione Zoologica di Napoli 29:151–171.
  • Yu J, Wang P, Ni F, Cizdziel J, Wu D, Zhao Q, Zhou Y. 2019a. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull. 145:153–160. doi:10.1016/j.marpolbul.2019.05.037
  • Yu Z, B, Peng L-Y, Liu C, Wong and Zeng EY. 2019b. Development and validation of an efficient method for processing microplastics in biota samples. Environ Toxicol Chem. 38(7):1400–1408. doi:10.1002/etc.4416
  • Zaki MRM, Zaid SHM, Zainuddin AH, Aris AZ. 2021. Microplastic pollution in tropical estuary gastropods: abundance, distribution and potential sources of Klang River estuary, Malaysia. Mar Pollut Bull. 162:111866. doi:10.1016/j.marpolbul.2020.111866
  • Zankai NP. 1994. Feeding of copepodite and adult states of Eudiaptomus gracilis (G.O. Sars 1863) (Copepoda, Calanoida) on mixed plastic beads. Crustac. 66(1):90–109. doi:10.1163/156854094X00189
  • Zhang E, Kim M, Rueda L, Rochman C, VanWormer E, Moore J, Shapiro K. 2022. Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health. Sci Rep. 12(1):6532. doi:10.1038/s41598-022-10485-5
  • Zhang F, Man YB, Mo WY, Man KY, Wong MH. 2020. Direct and indirect effects of microplastics on bivalves, with a focus on edible species: a mini-review. Crit Rev Environ Sci Technol. 50(20):2109–2143. doi:10.1080/10643389.2019.1700752
  • Zhang H. 2017. Transport of microplastics in coastal seas. Estuarine Coastal Shelf Sci. 199:74–86. doi:10.1016/j.ecss.2017.09.032
  • Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y. 2019. Microplastics in the environment: a review of analytical methods, distribution, and biological effects. Trends Anal Chem. 111:62–72. doi:10.1016/j.trac.2018.12.002
  • Zhao S, Danley M, Ward JE, Li D, Mincer TJ. 2017. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal Methods. 9(9):1470–1478. doi:10.1039/C6AY02302A
  • Zhao S, Ward JE, Danley M, Mincer TJ. 2018. Field-based evidence for microplastic in marine aggregates and mussels: implications for trophic transfer. Environ Sci Technol. 52(19):11038–11048. doi:10.1021/acs.est.8b03467
  • Zhou A, Zhang Y, Xie S, Chen Y, Li X, Wang J, Zou J. 2021. Microplastics and their potential effects on the aquaculture systems: a critical review. Rev Aquacult. 13(1):719–733. doi:10.1111/raq.12496
  • Zhou C, Bi R, Su C, Liu W, Wang T. 2022. The emerging issue of microplastics in marine environment: a bibliometric analysis from 2004 to 2020. Mar Pollut Bull. 179:113712. doi:10.1016/j.marpolbul.2022.113712
  • Zhu J, Zhang Q, Huang Y, Jiang Y, Li J, Michal JJ, Jiang Z, Xu Y, Lan W. 2021. Long-term trends of microplastics in seawater and farmed oysters in the Maowei Sea, China. Environ Pollut. 273:116450. doi:10.1016/j.envpol.2021.116450
  • Zhu J, Zhang Q, Li Y, Shudan T, Kang Z, Yu X, Lan W, Cai L, Wang J, Shi H. 2019. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci Total Environ. 658:62–68. doi:10.1016/j.scitotenv.2018.12.192
  • Zhu X, Qiang L, Shi H, Cheng J. 2020. Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters. Mar Pollut Bull. 154:111079. doi:10.1016/j.marpolbul.2020.111079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.