4,535
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

A SWOT Analysis of the Use of Marine, Grain, Terrestrial-Animal and Novel Protein Ingredients in Aquaculture Feeds

ORCID Icon, , , , , & show all

References

  • Anderson JS, Higgs DA, Beames RM, Rowshandeli M. 1997. Fish meal quality assessment for Atlantic salmon (Salmo salar L.) reared in sea water. Aquac Nutr. 3(1):25–38. doi: 10.1046/j.1365-2095.1997.00067.x.
  • Aas TS, Åsgård T, Ytrestøyl T. 2022. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2020. Aquacult Rep. 26:101316. doi: 10.1016/j.aqrep.2022.101316.
  • Adron JW, Mackie AM. 1978. Studies on the chemical nature of feeding stimulants for rainbow trout, Salmo gairdneri Richardson. J Fish Biol. 12(4):303–310. doi: 10.1111/j.1095-8649.1978.tb04175.x.
  • Agboola JO, Øverland M, Skrede A, Hansen JØ. 2021. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Rev Aquacult. 13(2):949–970. doi: 10.1111/raq.12507.
  • Agboola JO, Lapeña D, Øverland M, Arntzen MØ, Mydland LT, Hansen JØ. 2022. Yeast as a novel protein source-Effect of species and autolysis on protein and amino acid digestibility in Atlantic salmon (Salmo salar). Aquaculture. 546:737312. doi: 10.1016/j.aquaculture.2021.737312.
  • Alexander J, Benford D, Boobis A, Eskola M, Fink-Gremmels J, Fürst P, Heppner C, Schlatter J, van Leeuwen R. 2012. Risk assessment of contaminants in food and feed. EFS2. 10(10):s1004. doi: 10.2903/j.efsa.2012.s1004.
  • Allan GL, Booth MA. 2004. Effects of extrusion processing on digestibility of peas, lupins, canola meal and soybean meal in silver perch Bidyanus bidyanus (Mitchell) diets. Aquac Res. 35(10):981–991. doi: 10.1111/j.1365-2109.2004.01114.x.
  • Allan GL, Parkinson S, Booth MA, Stone DA, Rowland SJ, Frances J, Warner-Smith R. 2000. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: I. Digestibility of alternative ingredients. Aquaculture. 186(3–4):293–310. doi: 10.1016/S0044-8486(99)00380-4.
  • Anwar A, Wan AH, Omar S, El-Haroun E, Davies SJ. 2020. The potential of a solid-state fermentation supplement to augment white lupin (Lupinus albus) meal incorporation in diets for farmed common carp (Cyprinus carpio). Aquacult Rep. 17:100348. doi: 10.1016/j.aqrep.2020.100348.
  • Aslaksen MA, Kraugerud OF, Penn M, Svihus B, Denstadli V, Jørgensen HY, Hillestad M, Krogdahl Å, Storebakken T. 2007. Screening of nutrient digestibilities and intestinal pathologies in Atlantic salmon, Salmo salar, fed diets with legumes, oilseeds, or cereals. Aquaculture. 272(1-4):541–555. doi: 10.1016/j.aquaculture.2007.07.222.
  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, et al. 2015. Rising temperatures reduce global wheat production. Nat Clim Change. 5(2):143–147. doi: 10.1038/nclimate2470.
  • Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G. 2002. New feeds from genetically modified plants: substantial equivalence, nutritional equivalence, digestibility, and safety for animals and the food chain. Livestock Prod Sci. 74(3):223–238. doi: 10.1016/S0301-6226(02)00016-7.
  • Avadí A, Fréon P. 2015. A set of sustainability performance indicators for seafood: direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol Indic. 48:518–532. doi: 10.1016/j.ecolind.2014.09.006.
  • Avadí A, Fréon P. 2013. Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res. 143:21–38. doi: 10.1016/j.fishres.2013.01.006.
  • Bakke-McKellep AM, Sanden M, Danieli A, Acierno R, Hemre GI, Maffia M, Krogdahl Å. 2008. Atlantic salmon (Salmo salar L.) parr fed genetically modified soybeans and maize: histological, digestive, metabolic, and immunological investigations. Res Vet Sci. 84(3):395–408. doi: 10.1016/j.rvsc.2007.06.008.
  • Baldi L, Mancuso T, Peri M, Gasco L, Trentinaglia MT. 2022. Consumer attitude and acceptance toward fish fed with insects: a focus on the new generations. Jiff. 8(11):1249–1263. doi: 10.3920/JIFF2021.0109.
  • Barnes ME, Brown ML, Rosen KA, Sewell JR. 2012. An initial investigation replacing fish meal with a commercial fermented soybean meal product in the diets of juvenile rainbow trout. OJAS. 02 (04):234–243. doi: 10.4236/ojas.2012.24033.
  • Basto A, Matos E, Valente LM. 2020. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture. 521:735085. doi: 10.1016/j.aquaculture.2020.735085.
  • Basto A, Valente LM, Conde-Sieira M, Soengas JL. 2021. Central regulation of food intake is not affected by inclusion of defatted Tenebrio molitor larvae meal in diets for European sea bass (Dicentrarchus labrax). Aquaculture. 544:737088. doi: 10.1016/j.aquaculture.2021.737088.
  • Basto A, Valente LM, Soengas JL, Conde-Sieira M. 2022. Partial and total fishmeal replacement by defatted Tenebrio molitor larvae meal do not alter short-and mid-term regulation of food intake in European sea bass (Dicentrarchus labrax). Aquaculture. 560:738604. doi: 10.1016/j.aquaculture.2022.738604.
  • Batista S, Pintado M, Marques A, Abreu H, Silva JL, Jessen F, Tulli F, Valente LM. 2020. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J Appl Phycol.Phycol. 32(5):3429–3446. doi: 10.1007/s10811-020-02185-2.
  • Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbø R, Krogdahl Å, Lock EJ. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture. 503:609–619. doi: 10.1016/j.aquaculture.2018.12.032.
  • Benford DJ. 2013. Risk assessment of chemical contaminants and residues in foods In: Persistent organic pollutants and toxic metals in foods. Woodhead Publishing. p. 173–187.
  • Berntssen MHG, Olsvik PA, Torstensen BE, Julshamn K, Midtun T, Goksøyr A, Johansen J, Sigholt T, Joerum N, Jakobsen J-V, et al. 2010. Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle. Chemosphere. 81(2):242–252. doi: 10.1016/j.chemosphere.2010.06.031.
  • Boyd CE, D'Abramo LR, Glencross BD, Huyben DC, Juarez LM, Lockwood GS, McNevin AA, Tacon AGJ, Teletchea F, Tomasso JR, Jr, et al. 2020. Achieving sustainable aquaculture: historical and current perspectives and future needs and challenges. J World Aquacult Soc. 51(3):578–633. doi: 10.1111/jwas.12714.
  • Brown PB, Wilson KA, Jonker Y, Nickson TE. 2003. Glyphosate tolerant canola meal is equivalent to the parental line in diets fed to rainbow trout. J Agric Food Chem. 51(15):4268–4272. doi: 10.1021/jf034018f.
  • Bureau DP, Harris AM, Bevan DJ, Simmons LA, Azevedo PA, Cho CY. 2000. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture. 181(3-4):281–291. doi: 10.1016/S0044-8486(99)00232-X.
  • Bureau DP, Harris AM, Cho CY. 1999. Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture. 180(3-4):345–358. doi: 10.1016/S0044-8486(99)00210-0.
  • Calysta 2022. [accessed 2023 Apr 3]. https://calysta.com/new-era-of-food-security-beckons-as-worlds-first-industrial-scale-alternative-protein-facility-switches-on/.
  • Campos I, Matos E, Marques A, Valente LM. 2017. Hydrolyzed feather meal as a partial fishmeal replacement in diets for European seabass (Dicentrarchus labrax) juveniles. Aquaculture. 476:152–159. doi: 10.1016/j.aquaculture.2017.04.024.
  • Campos I, Valente LMP, Matos E, Marques P, Freire F. 2020. Life-cycle assessment of animal feed ingredients: poultry fat, poultry by-product meal and hydrolyzed feather meal. J Cleaner Prod. 252:119845. doi: 10.1016/j.jclepro.2019.119845.
  • Carter CG, Codabaccus MB. 2022. Assessing the value of single-cell ingredients in aquafeeds. Curr Opin Biotechnol. 76:102734. doi: 10.1016/j.copbio.2022.102734.
  • Carvalho M, Torrecillas S, Montero D, Sanmartín A, Fontanillas R, Farías A, Moutou K, Velásquez JH, Izquierdo M. 2022. Insect and single-cell protein meals as replacers of fish meal in low fish meal and fish oil diets for gilthead sea bream (Sparus aurata) juveniles. Aquaculture. 566:739215. doi: 10.1016/j.aquaculture.2022.739215.
  • Casadei E, Bird S, Vecino JLG, Wadsworth S, Secombes CJ. 2013. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 34(2):529–537. doi: 10.1016/j.fsi.2012.11.027.
  • Cashion T, Hornborg S, Ziegler F, Hognes ES, Tyedmers P. 2016. Review and advancement of the marine biotic resource use metric in seafood LCAs: a case study of Norwegian salmon feed. Int J Life Cycle Assess. 21(8):1106–1120. doi: 10.1007/s11367-016-1092-y.
  • Cashion T, Tyedmers P, Parker RW. 2017. Global reduction fisheries and their products in the context of sustainable limits. Fish Fish. 18(6):1026–1037. doi: 10.1111/faf.12222.
  • Castillo S, Gatlin DM.III 2015. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: a review. Aquaculture. 435:286–292. doi: 10.1016/j.aquaculture.2014.10.011.
  • Cataldo DA, Garland TR, Wildung RE. 1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68(4):835–839. doi: 10.1104/pp.68.4.835.
  • Chainark P, Satoh S, Hino T, Kiron V, Hirono I, Aoki T. 2006. Availability of genetically modified soybean meal in rainbow trout Oncorhynchus mykiss diets. Fish Sci. 72(5):1072–1078. doi: 10.1111/j.1444-2906.2006.01258.x.
  • Chua ET, Schenk PM. 2017. A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour Technol. 244(Pt 2):1416–1424. doi: 10.1016/j.biortech.2017.05.124.
  • Cohen Z, Ratledge C. (Eds.). 2015. Single cell oils: microbial and algal oils. Elsevier.
  • da Silva RFB, Viña A, Moran EF, Dou Y, Batistella M, Liu J. 2021. Socioeconomic and environmental effects of soybean production in metacoupled systems. Sci Rep. 11(1):18662. doi: 10.1038/s41598-021-98256-6.
  • Davies SJ, El-Haroun ER, Hassaan MS, Bowyer PH. 2021. A solid-state fermentation (SSF) supplement improved performance, digestive function and gut ultrastructure of rainbow trout (Oncorhynchus mykiss) fed plant protein diets containing yellow lupin meal. Aquaculture. 545:737177. doi: 10.1016/j.aquaculture.2021.737177.
  • Dawood MA, Koshio S. 2020. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev Aquacult. 12(2):987–1002. doi: 10.1111/raq.12368.
  • De Vries M, de Boer IJ. 2010. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livestock Sci. 128(1-3):1–11. doi: 10.1016/j.livsci.2009.11.007.
  • Deng DF, Hemre GI, Storebakken T, Shiau SY, Hung SSO. 2005. Utilization of diets with hydrolyzed potato starch, or glucose by juvenile white sturgeon (Acipenser transmontanus), as affected by Maillard reaction during feed processing. Aquaculture. 248(1-4):103–109. doi: 10.1016/j.aquaculture.2005.04.010.
  • D'Mello JPF. 1973. The use of methane-utilising bacteria as a source of protein for young chicks. Br Poult Sci. 14(3):291–301. doi: 10.1080/00071667308416031.
  • Drew MD, Borgeson TL, Thiessen DL. 2007. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Technol. 138(2):118–136. doi: 10.1016/j.anifeedsci.2007.06.019.
  • El-Haroun ER, Azevedo PA, Bureau DP. 2009. High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow trout Oncorhynchus mykiss (Walbaum, 1972). Aquaculture. 290(3-4):269–274. doi: 10.1016/j.aquaculture.2009.02.014.
  • Eroldogan OT, Elsabagh M, Sevgili H, Glencross B, Paolucci M, Kumlu M, Kınay E, Evliyaoğlu E, Yılmaz HA, Sarıipek M. 2022b. Use of poultry by-product and plant protein sources in diets of redclaw crayfish (Cherax quadricarinatus). Turk J Fish Aquat Sci. 22(8). doi: 10.4194/TRJFAS21188.
  • Eroldoğan OT, Glencross B, Novoveska L, Gaudêncio SP, Rinkevich B, Varese GC, de Fátima Carvalho M, Tasdemir D, Safarik I, Nielsen SL, et al. 2022a. From the sea to aquafeed: a perspective overview. Rev Aquacult. 15(3):1028–1057. doi: 10.1111/raq.12740.
  • Estévez M. 2015. Oxidative damage to poultry: from farm to fork. Poult Sci. 94(6):1368–1378. doi: 10.3382/ps/pev094.
  • European Commission (EC). 2001. Regulation (EC) No 99/2001 of the European Parliament and of the Council of 22 September 2003 on laying down rules for the prevention, control and eradication of certain transmissible spongioform encephalopathies. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l21154&from=EN.
  • European Commission (EC). 2003a. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l21154&from=EN.
  • European Commission (EC). 2003b. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l21170&from=EN.
  • European Commission (EC). 2013. Commission Regulation No 56/2013 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the prevention, control, and eradication of certain transmissible spongiform encephalopathies. Off J Eur Union. 21:3–16.
  • European Commission (EC). 2017. Commission Implementing Regulation (EU) 2017/962 of 7 June 2017 suspending the authorisation of ethoxyquin as a feed additive for all animal species and categories (Text with EEA relevance. Off J Eur Union. 60:13–17.
  • European Commission (EC). 2022. Commission Implementing Regulation (EU) 2022/1375 of 5 August 2022 concerning the denial of authorisation of ethoxyquin as a feed additive belonging to the functional group of antioxidants and repealing Implementing Regulation (EU) 2017/962 (1). Off J Eur Union. 65:39–41.
  • European Commission (EC). 2023. Regulation (EU) 2023/58 of 5 January 2023 authorising the placing on the market of the frozen, paste, dried and powder forms of Alphitolrius diaperinus larvae (lesser mealworm) as a novel food and amending Implementing Regulation (EU) 2017/2470. Off J Eur Union.
  • European Commission. 2018. PEFCR feed for food producing animals. [accessed 2023 Apr 3]. https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_feed.pdf.
  • European Food Safety Authority (EFSA) (NDA panel). 2022. Scientific Opinion on the safety of frozen and freeze dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 20(7):7325.
  • European Food Safety Authority (EFSA) GMO Panel (EFSA Panel on Genetically Modified Organisms), Mullins E, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ. 2022. Scientific opinion on the assessment of genetically modified soybean MON 87701 × MON 89788 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-022). EFSA J. 20(12):7684.
  • European Food Safety Authority (EFSA). 2005. Opinion of the scientific panel on contaminants in the food chain on a request from the European parliament related to the safety assessment of wild and farmed fish. EFSA J. 3(7):236. doi: 10.2903/j.efsa.2005.236.
  • European Food Safety Authority (EFSA). 2015. Risk profile related to production and consumption of insects as food and feed. Efsa J. 13(10):4257.
  • Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens)–Possibilities and limitations for modification through diet. Waste Manag. 102:40–47. doi: 10.1016/j.wasman.2019.10.014.
  • Faccio E, Guiotto Nai Fovino L. 2019. Food neophobia or distrust of novelties? Exploring consumers’ attitudes toward GMOs, insects and cultured meat. App Sci. 9(20):4440. doi: 10.3390/app9204440.
  • Fontaine J, Zimmer U, Moughan PJ, Rutherfurd SM. 2007. Effect of heat damage in an autoclave on the reactive lysine contents of soy products and corn distillers dried grains with solubles. Use of the results to check on lysine damage in common qualities of these ingredients. J Agric Food Chem. 55(26):10737–10743. doi: 10.1021/jf071747c.
  • Food and Agriculture Organization of the United Nations (FAO) 2022. The state of world fisheries and aquaculture 2022. Towards blue transformation. Rome: FAO. doi: 10.4060/cc0461en.
  • Forster IP, Dominy W, Obaldo L, Tacon AGJ. 2003. Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture. 219(1-4):655–670. doi: 10.1016/S0044-8486(02)00457-X.
  • Francis G, Makkar HP, Becker K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 199(3–4):197–227. doi: 10.1016/S0044-8486(01)00526-9.
  • Fraser ED, Dougill AJ, Hubacek K, Quinn CH, Sendzimir J, Termansen M. 2011. Assessing vulnerability to climate change in dryland livelihood systems: conceptual challenges and interdisciplinary solutions. E&S. 16(3):3. doi: 10.5751/ES-03402-160303.
  • Free CM, Jensen OP, Hilborn R. 2021. Evaluating impacts of forage fish abundance on marine predators. Conserv Biol. 35(5):1540–1551. doi: 10.1111/cobi.13709.
  • Fréon P, Durand H, Avadí A, Huaranca S, Moreyra RO. 2017. Life cycle assessment of three Peruvian fishmeal plants: toward a cleaner production. J Cleaner Prod. 145:50–63. doi: 10.1016/j.jclepro.2017.01.036.
  • Fréon P, Sueiro JC, Iriarte F, Miro Evar OF, Landa Y, Mittaine JF, Bouchon M. 2014. Harvesting for food versus feed: a review of Peruvian fisheries in a global context. Rev Fish Biol Fish. 24(1):381–398. doi: 10.1007/s11160-013-9336-4.
  • Gamboa-Delgado J, Márquez-Reyes JM. 2018. Potential of microbial-derived nutrients for aquaculture development. Rev Aquacult. 10(1):224–246. doi: 10.1111/raq.12157.
  • Gasco L, Acuti G, Bani P, Dalle Zotte A, Danieli PP, De Angelis A, Fortina R, Marino R, Parisi G, Piccolo G, et al. 2020. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital J Anim Sci. 19(1):360–372. doi: 10.1080/1828051X.2020.1743209.
  • Gasco L, Caimi C, Trocino A, Lussiana C, Oddon SB, Malfatto V, Anedda R, Serra G, Biasato I, Schiavone A, et al. 2022. Digestibility of defatted insect meals for rainbow trout aquafeeds. Jiff. 8(11):1385–1399. doi: 10.3920/JIFF2021.0160.
  • Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, et al. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res. 38(6):551–579. doi: 10.1111/j.1365-2109.2007.01704.x.
  • Glencross BD. 2020. A feed is still only as good as its ingredients: an update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquacult Nutr. 26(6):1871–1883. doi: 10.1111/anu.13138.
  • Glencross BD, Bachis E. 2021. Byproduct-based fishmeals: adding to the future of fishmeal production. Aquafeed. 13 (4):21–24.
  • Glencross BD, Baily J, Berntssen MH, Hardy R, MacKenzie S, Tocher DR. 2020a. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev Aquacult. 12(2):703–758. doi: 10.1111/raq.12347.
  • Glencross B, Blyth D, Cheers S, Bourne N, Wade N, Irvin S. 2017. A compendium of raw material digestibilities for barramundi, Lates calcarifer. Aquacult Nutr. 23(5):1055–1064. doi: 10.1111/anu.12473.
  • Glencross B, Blyth D, Wade N, Arnold S. 2018. Critical variability exists in the digestible value of raw materials fed to black tiger shrimp, Penaeus monodon: the characterisation and digestibility assessment of a series of research and commercial raw materials. Aquaculture. 495:214–221. doi: 10.1016/j.aquaculture.2018.05.026.
  • Glencross B, Curnow J, Hawkins W, Kissil GW, Peterson D. 2003. Evaluation of the feed value of a transgenic strain of the narrow-leaf lupin (Lupinus angustifolius) in the diet of the marine fish, Pagrus auratus. Aquacult Nutr. 9(3):197–206. doi: 10.1046/j.1365-2095.2003.00247.x.
  • Glencross B, Grobler T, Huyben D. 2021. Digestible nutrient and energy values of corn and wheat glutens fed to Atlantic salmon (Salmo salar) are affected by feed processing method. Aquaculture. 544:737133. doi: 10.1016/j.aquaculture.2021.737133.
  • Glencross B, Hawkins W, Evans D, Rutherford N, Dods K, McCafferty P, Sipsas S. 2007. Evaluation of the influence of drying process on the nutritional value of lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture. 265(1-4):218–229. doi: 10.1016/j.aquaculture.2007.01.040.
  • Glencross B, Hawkins W, Evans D, Rutherford N, McCafferty P, Dods K, Sipsas S. 2008. Assessing the implications of variability in the digestible protein and energy value of lupin kernel meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture. 277(3-4):251–262. doi: 10.1016/j.aquaculture.2008.02.012.
  • Glencross BD, Huyben D, Schrama JW. 2020b. The application of single-cell ingredients in aquaculture feeds—a review. Fishes. 5(3):22. doi: 10.3390/fishes5030022.
  • Glencross B, Irvin S, Arnold S, Blyth D, Bourne N, Preston N. 2014. Effective use of microbial biomass products to facilitate the complete replacement of fishery resources in diets for the black tiger shrimp, Penaeus monodon. Aquaculture. 431:12–19. doi: 10.1016/j.aquaculture.2014.02.033.
  • Glencross B, Muñoz-Lopez P, Matthew C, MacKenzie S, Powell A, Longshaw M, LeBlanc A. 2023. Digestibility of bacterial protein by Atlantic salmon (Salmo salar) is affected by both inclusion level and acclimation time. Aquaculture. 565:739137. doi: 10.1016/j.aquaculture.2022.739137.
  • Glencross B, Rutherford N, Bourne N. 2012. The influence of various starch and non-starch polysaccharides on the digestibility of diets fed to rainbow trout (Oncorhynchus mykiss). Aquaculture. 356-357:141–146. doi: 10.1016/j.aquaculture.2012.05.023.
  • Glencross B, Rutherford N, Hawkins W. 2011. A comparison of the growth performance of rainbow trout (Oncorhynchus mykiss) when fed soybean, narrow-leaf or yellow lupin meals in extruded diets. Aquacult Nutr. 7(2):e317–e325. doi: 10.1111/j.1365-2095.2010.00765.x.
  • Glencross B, Evans D, Rutherford N, Hawkins W, McCafferty P, Dods K, Jones B, Harris D, Morton L, Sweetingham M, et al. 2006. The influence of the dietary inclusion of the alkaloid gramine, on rainbow trout (Oncorhynchus mykiss) growth, feed utilisation and gastrointestinal histology. Aquaculture. 253(1-4):512–522. doi: 10.1016/j.aquaculture.2005.07.009.
  • Global Feed Lifecycle Assessment Institute. 2023. [accessed 2023 Apr 3]. https://globalfeedlca.org/.
  • Gonçalves RA, Schatzmayr D, Albalat A, Mackenzie S. 2020. Mycotoxins in aquaculture: feed and food. Rev Aquacult. 12(1):145–175. doi: 10.1111/raq.12310.
  • Gong Y, Guterres HADS, Huntley M, Sørensen M, Kiron V. 2018. Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquacult Nutr. 24(1):56–64. doi: 10.1111/anu.12533.
  • Green Plains. 2024. accessed 2024 Jan 10. https://gpreinc.com/what-we-do/proteins-ingredients/.
  • Gressel J. 2013. Transgenic marine microalgae: a value-enhanced fishmeal and fish oil replacement. In: Handbook of microalgal culture: applied phycology and biotechnology. p 653–670.
  • Halpern BS, Frazier M, Afflerbach J, Lowndes JS, Micheli F, O'Hara C, Scarborough C, Selkoe KA. 2019. Recent pace of change in human impact on the world’s ocean. Sci Rep. 9(1):11609. doi: 10.1038/s41598-019-47201-9.
  • Hamidoghli A, Won S, Farris NW, Bae J, Choi W, Yun H, Bai SC. 2020. Solid state fermented plant protein sources as fish meal replacers in whiteleg shrimp Litopaeneus vannamei. Anim Feed Sci Technol. 264:114474. doi: 10.1016/j.anifeedsci.2020.114474.
  • Hamidoghli A, Yun H, Won S, Kim S, Farris NW, Bai SC. 2019. Evaluation of a single-cell protein as a dietary fish meal substitute for whiteleg shrimp Litopenaeus vannamei. Fish Sci. 85(1):147–155. doi: 10.1007/s12562-018-1275-5.
  • Hammond BG, Vicini JL, Hartnell GF, Naylor MW, Knight CD, Robinson EH, Fuchs RL, Padgette SR. 1996. The feeding value of soybeans fed to rats, chickens, catfish and dairy cattle is not altered by genetic incorporation of glyphosate tolerance. J Nutr. 126(3):717–727. doi: 10.1093/jn/126.3.717.
  • Hansen JØ, Lagos L, Lei P, Reveco-Urzua FE, Morales-Lange B, Hansen LD, Schiavone M, Mydland LT, Arntzen MØ, Mercado L, et al. 2021. Down-stream processing of baker’s yeast (Saccharomyces cerevisiae) – effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture. 530:735707. doi: 10.1016/j.aquaculture.2020.735707.
  • Hardy RW, Patro B, Pujol-Baxley C, Marx CJ, Feinberg L. 2018. Partial replacement of soybean meal with Methylobacterium extorquens single-cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Res. 49(6):2218–2224. doi: 10.1111/are.13678.
  • Hardy RW, Kaushik SJ, Mai K, Bai SC. 2022. Fish nutrition—history and perspectives. In: Hardy RW, Kaushik SJ, editors. Fish nutrition. Academic Press. p. 1–16.
  • Hatlen B, Berge GM, Odom JM, Mundheim H, Ruyter B. 2012. Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture. 364-365:39–47. doi: 10.1016/j.aquaculture.2012.07.005.
  • Hemre GI, Mommsen TP, Krogdahl Å. 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult Nutr. 8(3):175–194. doi: 10.1046/j.1365-2095.2002.00200.x.
  • Hemre GI, Sagstad A, Bakke-Mckellep AM, Danieli A, Acierno R, Maffia M, Frøystad M, Krogdahl Å, Sanden M. 2007. Nutritional, physiological, and histological responses in Atlantic salmon, Salmo salar L. fed diets with genetically modified maize. Aquacult Nutr. 13(3):186–199. doi: 10.1111/j.1365-2095.2007.00465.x.
  • Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA, Costello C, de Moor CL, Faraj A, Hively D, Jensen OP, et al. 2020. Effective fisheries management instrumental in improving fish stock status. Proc Natl Acad Sci U S A. 117(4):2218–2224. doi: 10.1073/pnas.1909726116.
  • Hilborn R, Buratti CC, Díaz Acuña E, Hively D, Kolding J, Kurota H, Baker N, Mace PM, de Moor CL, Muko S, et al. 2022. Recent trends in abundance and fishing pressure of agency-assessed small pelagic fish stocks. Fish Fish. 23(6):1313–1331. doi: 10.1111/faf.12690.
  • Hnin KK, Zhang M, Mujumdar AS, Zhu Y. 2018. Emerging food drying technologies with energy-saving characteristics: a review. Drying Technol. doi: 10.1080/07373937.2018.1510417.
  • Hofmann T, Engling AC, Martens S, Steinhöfel O, Henle T. 2020. Quantification of Maillard reaction products in animal feed. Eur Food Res Technol. 246(1):253–256. doi: 10.1007/s00217-019-03406-w.
  • Hossain MS, Zhang Y, Small BC. 2022. Evaluation of a corn fermented protein with solubles (CFPS) as a complete soybean meal replacer in practical diets for Atlantic salmon (Salmo salar). Aquaculture. 566:739198. doi: 10.1016/j.aquaculture.2022.739198.
  • Hua K. 2021. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture. 530:735732. doi: 10.1016/j.aquaculture.2020.735732.
  • Hussein EES, Dabrowski K. E., -Saidy DM, Lee BJ. 2013. Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten) protein with algae protein. Aquac Res. 44(6):937–949. doi: 10.1111/j.1365-2109.2012.03100.x.
  • International Fishmeal and Fishoil Organisation. 2023. [accessed 2023 Apr 3]. https://www.iffo.com/global-food-security.
  • International Maritime Organisation. 2023. [accessed: 2023 Apr 3]. https://www.imo.org/en/OurWork/Safety/Pages/DangerousGoods-default.aspx
  • Irvin S, Blyth D, Bourne N, Glencross B. 2016. A study of the discrete and interactive effects of different polysaccharides on the digestibility of diets fed to barramundi (Lates calcarifer). Aquacult Nutr. 22(5):1047–1054. doi: 10.1111/anu.12321.
  • Jacob-Lopes E, Maroneze MM, Deprá MC, Sartori RB, Dias RR, Zepka LQ. 2019. Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Curr Opin Food Sci. 25:1–7. doi: 10.1016/j.cofs.2018.12.003.
  • Ji H, Cheng X, Li J, Zhang J, Liu C. 2012. Effect of dietary replacement of fish meal protein with silkworm pupae on the growth performance body composition and health status of Cyprinus carpio var.specularis fingerlings. J Fish China. 36(10):1599–1611. doi: 10.3724/SP.J.1231.2012.27945.
  • Jia F, Peng S, Green J, Koh L, Chen X. 2020. Soybean supply chain management and sustainability: a systematic literature review. J Cleaner Prod. 255:120254. doi: 10.1016/j.jclepro.2020.120254.
  • John M, Pannell D, Kingwell R. 2005. Climate change and the economics of farm management in the face of land degradation: dryland salinity in Western Australia. Can J Agri Econ. 53(4):443–459. doi: 10.1111/j.1744-7976.2005.00029.x.
  • Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. 2020. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol. 61:189–197. doi: 10.1016/j.copbio.2019.12.026.
  • Kaushik SJ. 1990. Use of alternative protein sources for the intensive rearing of carnivorous fish In: Floss R, Tort L, Torres P, Ellis H, editors. Mediterranean aquaculture. p.125–138.
  • Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture. 133(3-4):257–274. doi: 10.1016/0044-8486(94)00403-B.
  • Kaushik SJ, Luquet P. 1980. Influence of bacterial protein incorporation and of sulphur amino acid supplementation to such diets on growth of rainbow trout, Salmo gairdnerii Richardson. Aquaculture. 19(2):163–175. doi: 10.1016/0044-8486(80)90017-4.
  • Kaushik SJ, Panserat S, Schrama JW. 2022. Chapter 7 – Carbohydrates In: Hardy RW, Kaushik SJ, editors. Fish nutrition. 4th ed. Academic Press. p. 555–591.
  • Kong D, Sun D, Qiu R, Zhang W, Liu Y, He Y. 2022. Rapid and nondestructive detection of marine fishmeal adulteration by hyperspectral imaging and machine learning. Spectrochim Acta A Mol Biomol Spectrosc. 273:120990. doi: 10.1016/j.saa.2022.120990.
  • Krogdahl Å, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM. 2015. Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Chem. 63(15):3887–3902. doi: 10.1021/jf506242t.
  • Krogdahl Å, Kortner TM, Hardy RW. 2022. Chapter 12 – Antinutrients and adventitious toxins In: Hardy RW, Kaushik SJ, editors. Fish nutrition. 4th ed. Academic Press. p. 775–821.
  • Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. 2010. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult Res. 41(3):333–344. doi: 10.1111/j.1365-2109.2009.02426.x.
  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. 2020. Genetically modified crops: current status and future prospects. Planta. 251(4):91. doi: 10.1007/s00425-020-03372-8.
  • Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability. 7(5):5875–5895. doi: 10.3390/su7055875.
  • Langeland M, Vidakovic A, Vielma J, Lindberg JE, Kiessling A, Lundh T. 2016. Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquacult Nutr. 22(2):485–495. doi: 10.1111/anu.12268.
  • LaTurner ZW, Bennett GN, San KY, Stadler LB. 2020. Single cell protein production from food waste using purple non-sulfur bacteria shows economically viable protein products have higher environmental impacts. J Cleaner Prod. 276:123114. doi: 10.1016/j.jclepro.2020.123114.
  • Li P, Gatlin Iii DM. 2003. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture. 219(1-4):681–692. doi: 10.1016/S0044-8486(02)00653-1.
  • Li P, Gatlin Iii DM. 2006. Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture. 251(2–4):141–152. doi: 10.1016/j.aquaculture.2005.01.009.
  • Li P, Wu G. 2020. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids. 52(4):523–542. doi: 10.1007/s00726-020-02833-4.
  • Li J, Wu Y, Xu Z, Yang X, Qiu S. 2017. Study on the application of research progress on earthworm powder. Sichuan Anim Vet Sci. 4:36–37.
  • Llagostera PF, Kallas Z, Reig L, De Gea DA. 2019. The use of insect meal as a sustainable feeding alternative in aquaculture: current situation, Spanish consumers’ perceptions and willingness to pay. J Cleaner Prod. 229:10–21. doi: 10.1016/j.jclepro.2019.05.012.
  • Lobell DB, Gourdji SM. 2012. The influence of climate change on global crop productivity. Plant Physiol. 160(4):1686–1697. doi: 10.1104/pp.112.208298.
  • Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science. 333(6042):616–620. doi: 10.1126/science.1204531.
  • Lock EJ, Biancarosa I, Gasco L. 2018. Insects as raw materials in compound feed for aquaculture. In: Edible insects in sustainable food systems. Cham: Springer. p. 263–276.
  • Lotta F. 2019. Insects as food: the legal framework. In: Edible insects in the food sector: methods current applications and perspectives. Springer, p. 105–118.
  • Magalhães R, Díaz-Rosales P, Diógenes AF, Enes P, Oliva-Teles A, Peres H. 2018. Improved digestibility of plant ingredient-based diets for European seabass (Dicentrarchus labrax) with exogenous enzyme supplementation. Aquacult Nutr. 24(4):1287–1295. doi: 10.1111/anu.12666.
  • Malcorps W, Newton RW, Sprague M, Glencross BD, Little DC. 2021. Nutritional characterisation of European aquaculture processing by-products to facilitate strategic utilisation. Front Sustain Food Syst. 5 doi: 10.3389/fsufs.2021.720595.
  • Malcorps W, Kok B, van‘T Land M, Fritz M, van Doren D, Servin K, van der Heijden P, Palmer R, Auchterlonie N, Rietkerk M, et al. 2019. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability. 11(4):1212. doi: 10.3390/su11041212.
  • Mankins JC. 2009. Technology readiness assessments: a retrospective. Acta Astronaut (UK). 65(9–10):1216–1223. doi: 10.1016/j.actaastro.2009.03.058.
  • Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA, Nizza A, Bovera F. 2015. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci. 14(3):3889. doi: 10.4081/ijas.2015.3889.
  • Maunder MN. 2002. The relationship between fishing methods, fisheries management and the estimation of maximum sustainable yield. Fish Fish. 3(4):251–260. doi: 10.1046/j.1467-2979.2002.00089.x.
  • Meeker DL. 2006. Essential rendering: all about the animal by-products industry. National Renderers Association : Fats and Proteins Research Foundation : Animal Protein Producers Industry.
  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJ. 1997. Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A. 94(16):8393–8398. doi: 10.1073/pnas.94.16.8393.
  • Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. 2017. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Global Food Secur. 14:1–8. doi: 10.1016/j.gfs.2017.01.001.
  • Moumen A, Azizi G, Chekroun KB, Baghour M. 2016. The effects of livestock methane emission on the global warming: a review. IJGW. 9(2):229–253. doi: 10.1504/IJGW.2016.074956.
  • Mukherjee R, Chakraborty R, Dutta A. 2016. Role of fermentation in improving nutritional quality of soybean meal—a review. Asian-Australas J Anim Sci. 29(11):1523–1529. doi: 10.5713/ajas.15.0627.
  • Murawska D, Kleczek K, Wawro K, Michalik D. 2011. Age-related changes in the percentage content of edible and non-edible components in broiler chickens. Asian Australas J Anim Sci. 24(4):532–539. doi: 10.5713/ajas.2011.10112.
  • Murray I, Aucott LS, Pike IH. 2001. Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fishmeal with meat and bone meal. J Near Infrared Spectrosc. 9(4):297–311. doi: 10.1255/jnirs.315.
  • National Research Council (NRC). 2011. Nutrient requirements of fish and shrimp. National Academies Press.
  • Newton RW, Maiolo S, Malcorps W, Little DC. 2023. Life Cycle Inventories of marine ingredients. Aquaculture. 565:739096. doi: 10.1016/j.aquaculture.2022.739096.
  • Ngo DT, Pirozzi I, Glencross B. 2015. Digestibility of canola meals in barramundi (Asian seabass; Lates calcarifer). Aquaculture. 435:442–449. doi: 10.1016/j.aquaculture.2014.10.031.
  • Ngo DT, Wade NM, Pirozzi I, Glencross BD. 2016. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass; Lates calcarifer). Aquaculture. 464:95–105. doi: 10.1016/j.aquaculture.2016.06.020.
  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ. 1999. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol. 70(1):23–31. doi: 10.1016/S0960-8524(99)00017-6.
  • Nongonierma AB, FitzGerald RJ. 2017. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol. 43:239–252. doi: 10.1016/j.ifset.2017.08.014.
  • Onwezen MC, Bouwman EP, Reinders MJ, Dagevos H. 2021. A systematic review on consumer acceptance of alternative proteins: pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite. 159:105058. doi: 10.1016/j.appet.2020.105058.
  • Ott D, Goyal S, Reuss R, Gutzeit HO, Liebscher J, Dautz J, Degieter M, De Steur H, Zannini E. 2023. LCA as decision support tool in the food and feed sector: evidence from R&D case studies. Environ Syst Decis. 43(1):129–141. doi: 10.1007/s10669-022-09874-y.
  • Our World in Data 2023. [accessed 2023 Apr 3]. https://ourworldindata.org/soy.
  • Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A. 2013. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture. 402-403:1–7. doi: 10.1016/j.aquaculture.2013.03.016.
  • Øverland M, Romarheim OH, Hovin M, Storebakken T, Skrede A. 2006. Apparent total tract digestibility of unprocessed and extruded diets containing basic and autolyzed bacterial protein meal grown on natural gas in mink and rainbow trout. Anim Feed Sci Technol. 129(3-4):237–251. doi: 10.1016/j.anifeedsci.2005.12.017.
  • Øverland M, Skrede A. 2017. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J Sci Food Agric. 97(3):733–742. doi: 10.1002/jsfa.8007.
  • Øverland M, Sørensen M, Storebakken T, Penn M, Krogdahl Å, Skrede A. 2009. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)—effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 288(3-4):305–311. doi: 10.1016/j.aquaculture.2008.12.012.
  • Øverland M, Tauson AH, Shearer K, Skrede A. 2010. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch Anim Nutr. 64(3):171–189. doi: 10.1080/17450391003691534.
  • Packard Foundation 2023. [accessed: 2023 Apr 3]. https://www.packard.org/wp-content/uploads/2019/01/Chile-Marine-Strategy-2019-2021-02.19.pdf.
  • Pajurek M, Warenik-Bany M, Mikolajczyk S. 2023. Dioxin transfer simulation from feed to animal tissues and risk assessment. Chemosphere. 313:137379. doi: 10.1016/j.chemosphere.2022.137379.
  • Papatryphon E, Petit J, Kaushik SJ, van der Werf HMG. 2004. Environmental impact assessment of salmonid feeds using life cycle assessment (LCA). Ambio. 33(6):316–323. doi: 10.1579/0044-7447-33.6.316.
  • Parker RW, Blanchard JL, Gardner C, Green BS, Hartmann K, Tyedmers PH, Watson RA. 2018. Fuel use and greenhouse gas emissions of world fisheries. Nature Clim Change. 8(4):333–337. doi: 10.1038/s41558-018-0117-x.
  • Parzefall W. 2002. Risk assessment of dioxin contamination in human food. Food Chem Toxicol. 40(8):1185–1189. doi: 10.1016/s0278-6915(02)00059-5.
  • Pelletier N, Klinger DH, Sims NA, Yoshioka JR, Kittinger JN. 2018. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ Sci Technol.. 52(10):5532–5544. doi: 10.1021/acs.est.7b05468.
  • Pesti GM, Miller BR. 1993. Animal feed formulation: economic and computer applications. Springer Science & Business Media.
  • Pew Charitable Trust. 2023. [accessed 2023 Apr. 3]. https://www.pewtrusts.org/en/projects/international-fisheries.
  • Pikitch EK, Rountos KJ, Essington TE, Santora C, Pauly D, Watson R, Sumaila UR, Boersma PD, Boyd IL, Conover DO, et al. 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15(1):43–64. doi: 10.1111/faf.12004.
  • Pilmer LW, Woolley LD, Lymbery AJ, Salini M, Partridge GJ. 2022. Using dietary additives to improve palatability of diets containing single-cell protein from methanotrophic bacteria in yellowtail kingfish (Seriola lalandi) diets. Aquacult Res. 53(14):5006–5017. doi: 10.1111/are.15986.
  • Plakas SM, Lee TC, Wolke RE. 1988. Bioavailability of lysine in Maillard browned protein as determined by plasma lysine response in rainbow trout (Salmo gairdneri). J Nutr. 118(1):19–22. doi: 10.1093/jn/118.1.19.
  • Plakas SM, Lee TC, Wolke RE, Meade TL. 1985. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri). J Nutr. 115(12):1589–1599. doi: 10.1093/jn/115.12.1589.
  • Quang Tran H, Van Doan H, Stejskal V. 2022. Environmental consequences of using insect meal as an ingredient in aquafeeds: a systematic view. Rev Aquacult. 14(1):237–251. doi: 10.1111/raq.12595.
  • Rajesh M, Kamalam BS, Sharma P, Verma VC, Pandey A, Dubey MK, Ciji A, Akhtar MS, Pandey N, Sarma D, et al. 2022. Evaluation of a novel methanotroph bacteria meal grown on natural gas as fish meal substitute in rainbow trout, Oncorhynchus mykiss. Aquacult Res. 53(6):2159–2174. doi: 10.1111/are.15735.
  • Refstie S, Glencross B, Landsverk T, Sørensen M, Lilleeng E, Hawkins W, Krogdahl Å. 2005. Digestive function and intestinal integrity in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leafed lupins. Aquaculture. 261(4):1382–1395. doi: 10.1016/j.aquaculture.2006.07.046.
  • Regueiro L, Newton R, Soula M, Méndez D, Kok B, Little DC, Pastres R, Johansen J, Ferreira M. 2022. Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. J Ind Ecol. 26(6):2033–2044. doi: 10.1111/jiec.13188.
  • Resende D, Costas B, Sá T, Golfetto U, Machado M, Pereira M, Pereira C, Marques B, Rocha CMR, Pintado M, et al. 2022. Innovative swine blood hydrolysates as promising ingredients for European seabass diets: impact on growth performance and resistance to Tenacibaculum maritimum infection. Aquaculture. 561:738657. doi: 10.1016/j.aquaculture.2022.738657.
  • Rocker MM, Lewis MJ, Mock TS, Francis DS, Bellagamba F, Moretti VM, Quinn GP, Smullen RP, Turchini GM. 2021. Poultry offal meal production conditions impact meal quality and digestibility in Atlantic salmon (Salmo salar). Aquaculture. 542:736909. doi: 10.1016/j.aquaculture.2021.736909.
  • Romarheim OH, Landsverk T, Mydland LT, Skrede A, Øverland M. 2013. Cell wall fractions from Methylococcus capsulatus prevent soybean meal-induced enteritis in Atlantic salmon (Salmo salar). Aquaculture. 402–403:13–18. doi: 10.1016/j.aquaculture.2013.03.011.
  • Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T. 2011. Bacteria grown on natural gas prevent soybean meal-induced enteritis in Atlantic salmon. J Nutr. 141(1):124–130. doi: 10.3945/jn.110.128900.
  • Rumsey G, Kinsella J, Shetty K, Hughes S. 1991. Effect of high dietary concentrations of brewer’s dried yeast on growth performance and liver uricase in rainbow trout (Oncorhynchus mykiss). Anim Feed Sci Technol. 33(3-4):177–183. doi: 10.1016/0377-8401(91)90058-Z.
  • Rutherfurd SM. 2015. Use of the guanidination reaction for determining reactive lysine, bioavailable lysine and gut endogenous lysine. Amino Acids. 47(9):1805–1815. doi: 10.1007/s00726-015-2007-0.
  • Sagstad A, Sanden M, Krogdahl Å, Bakke-McKellep AM, Frøystad M, Hemre GI. 2008. Organs development, gene expression and health of Atlantic salmon (Salmo salar L.) fed genetically modified soybeans compared to the near-isogenic non-modified parental line. Aquacult Nutr. 14(6):556–572. doi: 10.1111/j.1365-2095.2008.00630.x.
  • Salze GP, Tibbetts SM. 2021. Apparent digestibility coefficients of proximate nutrients and essential amino acids from a single-cell protein meal derived from Methylobacterium extorquens for pre-smolt Atlantic salmon (Salmo salar L.). Aquacult Res. 49:2218–2224.
  • Samuelsen TA, Oterhals Å, Kousoulaki K. 2018. High lipid microalgae (Schizochytrium sp.) inclusion as a sustainable source of n-3 long-chain PUFA in fish feed—effects on the extrusion process and physical pellet quality. Anim Feed Sci Technol. 236:14–28. doi: 10.1016/j.anifeedsci.2017.11.020.
  • Sanden M, Krogdahl Å, Bakke-Mckellep AM, Buddington RK, Hemre GI. 2006. Growth performance and organ development in Atlantic salmon, Salmo salar L. parr fed genetically modified (GM) soybean and maize. Aquac Nutr. 12(1):1–14. doi: 10.1111/j.1365-2095.2006.00367.x.
  • Sanderson GW, Jolly SO. 1994. The value of Phaffia yeast as a feed ingredient for salmonid fish. Aquaculture. 124(1-4):193–200. doi: 10.1016/0044-8486(94)90377-8.
  • Sarker PK, Kapuscinski AR, Bae AY, Donaldson M, Sitek AJ, Fitzgerald DS, Edelson OF. 2018. Towards sustainable aquafeeds: evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculataI) in diets of juvenile Nile tilapia (Oreochromis niloticus). PloS One. 13(7):e0201315. doi: 10.1371/journal.pone.0201315.
  • Sarker PK, Kapuscinski AR, Lanois AJ, Livesey ED, Bernhard KP, Coley ML. 2016. Towards sustainable aquafeeds: complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PloS One. 11(6):e0156684. doi: 10.1371/journal.pone.0156684.
  • Schøyen HF, Frøyland JRK, Sahlström S, Knutsen SH, Skrede A. 2005. Effects of autolysis and hydrolysis of bacterial protein meal grown on natural gas on chemical characterization and amino acid digestibility. Aquaculture. 248(1-4):27–33. doi: 10.1016/j.aquaculture.2005.04.017.
  • Sellars MJ, Rao M, Polymeris N, Irvin SJ, Cowley JA, Preston NP, Glencross BD. 2015. Feed containing Novacq improves resilience of black tiger shrimp, Penaeus monodon, to gill-associated virus-induced mortality. J World Aquacult Soc. 46(3):328–336. doi: 10.1111/jwas.12190.
  • Serrano E, Storebakken T, Penn M, Øverland M, Hansen JØ, Mydland LT. 2011. Responses in rainbow trout (Oncorhynchus mykiss) to increasing dietary doses of lupinine, the main quinolizidine alkaloid found in yellow lupins (Lupinus luteus). Aquaculture. 318(1-2):122–127. doi: 10.1016/j.aquaculture.2011.05.004.
  • Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M. 2016. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci. 7:531. doi: 10.3389/fpls.2016.00531.
  • Sharawy Z, Goda AMS, Hassaan MS. 2016. Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Anim Feed Sci Technol. 212:90–99. doi: 10.1016/j.anifeedsci.2015.12.009.
  • Sharif M, Zafar MH, Aqib AI, Saeed M, Farag MR, Alagawany M. 2021. Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 531:735885. doi: 10.1016/j.aquaculture.2020.735885.
  • Shepherd CJ, Jackson AJ. 2013. Global fishmeal and fish-oil supply: inputs, outputs and markets. J Fish Biol. 83(4):1046–1066. doi: 10.1111/jfb.12224.
  • Shi Y, Zhu B, Zhang W, Zhou X, Gao W, Chi S. S, Tan 2022. Apparent digestibility of six new non-grain protein ingredients for largemouth bass (Micropterus salmoides). Acta Hydrobiol Sin. 46(08):85–94.
  • Silano M, Silano V. 2017. Food and feed chemical contaminants in the European Union: regulatory, scientific, and technical issues concerning chemical contaminants occurrence, risk assessment, and risk management in the European Union. Crit Rev Food Sci Nutr. 57(10):2162–2217. doi: 10.1080/10408398.2015.1059313.
  • Silva CB, Valente LM, Matos E, Brandão M, Neto B. 2018. Life cycle assessment of aquafeed ingredients. Int J Life Cycle Assess. 23(5):995–1017. doi: 10.1007/s11367-017-1414-8.
  • Silván JM, van de Lagemaat J, Olano A, Del Castillo MD. 2006. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J Pharm Biomed Anal. 41(5):1543–1551. doi: 10.1016/j.jpba.2006.04.004.
  • Simon CJ, Salini MJ, Irvin S, Blyth D, Bourne N, Smullen R. 2019. The effect of poultry protein concentrate and phosphorus supplementation on growth, digestibility and nutrient retention efficiency in barramundi Lates calcarifer. Aquaculture. 498:305–314. doi: 10.1016/j.aquaculture.2018.08.069.
  • Sinha AK, Kumar V, Makkar HP, De Boeck G, Becker K. 2011. Non-starch polysaccharides and their role in fish nutrition–a review. Food Chem. 127(4):1409–1426. doi: 10.1016/j.foodchem.2011.02.042.
  • Sissener NH, Sanden M, Bakke AM, Krogdahl Å, Hemre GI. 2009. A long term trial with Atlantic salmon (Salmo salar L.) fed genetically modified soy; focusing general health and performance before, during and after the parr–smolt transformation. Aquaculture. 294(1-2):108–117. doi: 10.1016/j.aquaculture.2009.05.002.
  • Skrede A, Mydland LT, Ahlstrøm Ø, Reitan KI, Gislerød HR, Øverland M. 2011. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci.Sci. 20(1):131–142. doi: 10.22358/jafs/66164/2011.
  • Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol. 245(Pt A):162–170. doi: 10.1016/j.biortech.2017.08.113.
  • Smith DM, Tabrett SJ, Barclay MC, Irvin SJ. 2005. The efficacy of ingredients included in shrimp feeds to stimulate intake. Aquac Nutr. 11(4):263–272. doi: 10.1111/j.1365-2095.2005.00349.x.
  • Smith DM, Tabrett SJ, Glencross BD, Irvin SJ, Barclay MC. 2007a. Digestibility of lupin kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture. 264(1-4):353–362. doi: 10.1016/j.aquaculture.2006.12.002.
  • Smith DM, Tabrett SJ, Irvin SJ, Wakeling J, Glencross BD, Harris D. 2007b. Response of the black tiger shrimp, Penaeus monodon to feed containing the lupin alkaloid, gramine. Aquaculture. 272(1-4):556–563. doi: 10.1016/j.aquaculture.2007.07.233.
  • Sørensen M, Berge GM, Reitan KI, Ruyter B. 2016. Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar)—effect on nutrient digestibility, growth and utilization of feed. Aquaculture. 460:116–123. doi: 10.1016/j.aquaculture.2016.04.010.
  • Soto-Sierra L, Stoykova P, Nikolov ZL. 2018. Extraction and fractionation of microalgae-based protein products. Algal Res. 36:175–192. doi: 10.1016/j.algal.2018.10.023.
  • Stevens JR, Newton RW, Tlusty M, Little DC. 2018. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mari Policy. 90:115–124. doi: 10.1016/j.marpol.2017.12.027.
  • Storebakken T, Baeverfjord G, Skrede A, Olli JJ, Berge GM. 2004. Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture. 241(1-4):413–425. doi: 10.1016/j.aquaculture.2004.07.024.
  • Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ, Berge GM. 1998. The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods. Aquaculture. 169(3-4):195–210. doi: 10.1016/S0044-8486(98)00379-2.
  • Svanes E, Vold M, Hanssen OJ. 2011. Effect of different allocation methods on LCA results of products from wild-caught fish and on the use of such results. Int J Life Cycle Assess. 16(6):512–521. doi: 10.1007/s11367-011-0288-4.
  • Szczepański A, Adamek-Urbańska D, Kasprzak R, Szudrowicz H, Śliwiński J, Kamaszewsk M. 2022. Lupin: a promising alternative protein source for aquaculture feeds? Aquacult Rep. 26:101281. doi: 10.1016/j.aqrep.2022.101281.
  • Tao C, Wei X, Zhang B, Zhao M, Wang S, Sun Z, Qi D, Sun L, Rajput SA, Zhang N. 2020. Heavy metal content in feedstuffs and feeds in Hubei province, China. J Food Prot. 83(5):762–766. doi: 10.4315/0362-028X.JFP-18-539.
  • Teuling E, Wierenga PA, Agboola JO, Gruppen H, Schrama JW. 2019. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture. 499:269–282. doi: 10.1016/j.aquaculture.2018.09.047.
  • Teuling E, Wierenga PA, Schrama JW, Gruppen H. 2017. Comparison of protein extracts from various unicellular green sources. J Agric Food Chem. 65(36):7989–8002. doi: 10.1021/acs.jafc.7b01788.
  • Tibbetts SM. 2018. The potential for ‘next-generation’, microalgae-based feed ingredients for salmonid aquaculture in context of the blue revolution. Microalgal Biotechnol. 27:151.
  • Tibbetts SM, Mann J, Dumas A. 2017. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture. 481:25–39. doi: 10.1016/j.aquaculture.2017.08.018.
  • Tiessen H, Cuevas E, Chacon P. 1994. The role of soil organic matter in sustaining soil fertility. Nature. 371(6500):783–785. doi: 10.1038/371783a0.
  • Tukker A. 2000. Life cycle assessment as a tool in environmental impact assessment. Environ Impact Assess Rev. 20(4):435–456. doi: 10.1016/S0195-9255(99)00045-1.
  • Turchini GM, Trushenski JT, Glencross BD. 2019. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N Am J Aquacult. 81(1):13–39. doi: 10.1002/naaq.10067.
  • Tyedmers P. 2001. Energy consumed by north Atlantic fisheries. In: Zeller D, Watson R and Pauly D, editors. Fisheries impacts on North Atlantic ecosystems: catch, effort and national/regional datasets. Fisheries Center Research Reports. Vol. 9. p. 12–34.
  • Tyedmers P. 2000. Salmon and sustainability: the biophysical cost of producing salmon through the commercial salmon fishery and the intensive Salmon culture Industry [PhD thesis]. Vancouver, Canada: University of British Columbia. p. 258.
  • Veldkamp T, Meijer N, Alleweldt F, Deruytter D, Van Campenhout L, Gasco L, Roos N, Smetana S, Fernandes A, Van der Fels-Klerx HJ. 2022. Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: a SUSINCHAIN perspective. Insects. 13(3):281. doi: 10.3390/insects13030281.
  • Vidakovic A, Huyben D, Sundh H, Nyman A, Vielma J, Passoth V, Kiessling A, Lundh T. 2020. Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquacult Nutr. 26(2):275–286. doi: 10.1111/anu.12988.
  • Volkoff H. 2019. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol. 497:110437. doi: 10.1016/j.mce.2019.04.017.
  • Wang H, Dong Y, Yang Y, Toor GS, Zhang X. 2013. Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J Environ Sci (China). 25(12):2435–2442. doi: 10.1016/s1001-0742(13)60473-8.
  • Wehry GJJ, Little DC, Newton RW, Bostock J. 2022. The feasibility of underutilised biomass streams for the production of insect-based feed ingredients: the case for whisky by-products and Scottish farmed salmon. Cleaner Eng Technol. 9:100520. doi: 10.1016/j.clet.2022.100520.
  • Weththasinghe P, Hansen JØ, Mydland LT, Øverland M. 2022. A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev Aquacult. 14(2):938–956. doi: 10.1111/raq.12635.
  • Williams KC, Barlow CG, Rodgers LJ, Ruscoe I. 2003. Potential of meat meal to replace fish meal in extruded dry diets for barramundi, Lates calcarifer (Bloch). I. Growth performance. Aquacult Res. 34(1):23–32. doi: 10.1046/j.1365-2109.2003.00785.x.
  • Woolley L, Chaklader MR, Pilmer L, Stephens F, Wingate C, Salini M, Partridge G. 2023. Gas to protein: microbial single cell protein is an alternative to fishmeal in aquaculture. Sci Total Environ. 859(Pt 1):160141. doi: 10.1016/j.scitotenv.2022.160141.
  • World Renderers Organization (WRO). 2023. [accessed 2023 Apr 3]. https://worldrenderers.net/.
  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science. 314(5800):787–790. doi: 10.1126/science.1132294.
  • Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, et al. 2009. Rebuilding global fisheries. Science. 325(5940):578–585. doi: 10.1126/science.1173146.
  • Wright B. 2014. Global biofuels: key to the puzzle of grain market behaviour. J Econ Perspect. 28(1):73–98. doi: 10.1257/jep.28.1.73.
  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessalon). 21(1):6. doi: 10.1186/2241-5793-21-6.
  • Yamamoto T, Iwashita Y, Matsunari H, Sugita T, Furuita H, Akimoto A, Okamatsu K, Suzuki N. 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture. 309(1-4):173–180. doi: 10.1016/j.aquaculture.2010.09.021.
  • Yasuoka A, Abe K. 2009. Gustation in fish: search for prototype of taste perception In: Chemosensory systems in mammals, fishes, and insects. p. 97–120.
  • Yu M-h, Li X-S, Wang J, Longshaw M, Song K, Wang L, Zhang C-X, Lu K-L. 2022. Substituting fish meal with a bacteria protein (Methylococcus capsulatus, Bath) grown on natural gas: effects on growth non-specific immunity and gut health of spotted seabass (Lateolabrax maculatus). Anim Feed Sci Technol. 296:115556. doi: 10.1016/j.anifeedsci.2022.115556.
  • Zhang W, Liu M, Sadovy de Mitcheson Y, Cao L, Leadbitter D, Newton R, Little DC, Li S, Yang Y, Chen X, et al. 2020. Fishing for feed in China: facts, impacts and implications. Fish Fish. 21(1):47–62. doi: 10.1111/faf.12414.
  • Zhang Y, Øverland M, Sørensen M, Penn M, Mydland LT, Shearer KD, Storebakken T. 2012. Optimal inclusion of lupin and pea protein concentrates in extruded diets for rainbow trout (Oncorhynchus mykiss). Aquaculture. 344–349:100–113. doi: 10.1016/j.aquaculture.2012.03.012.
  • Zhuo LC, Liu K, Lin YH. 2016. Apparent digestibility of soybean meal and Lactobacillus spp. fermented soybean meal in diets of grouper, Epinephelus coioides. Aquac Res. 47(3):1009–1012. doi: 10.1111/are.12543.